服裝店銷售一種進價為50元的襯衣,生產(chǎn)廠家規(guī)定售價為60元-170元,當(dāng)定價為60元時,平均每周可賣出70件,定價每漲價10元,每周少買5件,現(xiàn)將這種襯衣售價定為x元(規(guī)定x是10的整數(shù)倍),這種襯衣每周銷售件數(shù)為y件,每周賣這種襯衣所得的利潤為w元,
(1)請直接寫出y與x的函數(shù)關(guān)系(不必寫x的取值范圍)
(2)請求出w與x的函數(shù)關(guān)系(不必寫x的取值范圍)
(3)要想每周取得2500元利潤,并且讓顧客得到實惠,應(yīng)將售價定為多少元?
(1)y=70-
x-60
10
×5=-
1
2
x+100;

(2)w=(x-50)(-
1
2
x+100)=-
1
2
x2+125x-5000;

(3)由題意得
-
1
2
x2+125x-5000=2500
化簡得x2-250x+15000=0
解得x1=100,x2=150
∵要讓顧客得到實惠
∴只取x=100.
答:應(yīng)將售價定為100元.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:如圖,點A在y軸上,⊙A與x軸交于B、C兩點,與y軸交于點D(0,3)和點E(0,-1)
(1)求經(jīng)過B、E、C三點的二次函數(shù)的解析式;
(2)若經(jīng)過第一、二、三象限的一動直線切⊙A于點P(s,t),與x軸交于點M,連接PA并延長與⊙A交于點Q,設(shè)Q點的縱坐標(biāo)為y,求y關(guān)于t的函數(shù)關(guān)系式,并觀察圖形寫出自變量t的取值范圍;
(3)在(2)的條件下,當(dāng)y=0時,求切線PM的解析式,并借助函數(shù)圖象,求出(1)中拋物線在切線PM下方的點的橫坐標(biāo)x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,隧道的截面由拋物線AED和矩形ABCD構(gòu)成,矩形的長BC為8m,寬AB為2m,以BC所在的直線為x軸,線段BC的中垂線為y軸,建立平面直角坐標(biāo)系.y軸是拋物線的對稱軸,頂點E到坐標(biāo)原點O的距離為6m.
(1)求拋物線的解析式;
(2)如果該隧道內(nèi)設(shè)雙行道,現(xiàn)有一輛貨運卡車高4.2m,寬2.4米,這輛貨運卡車能否通過該隧道?通過計算說明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:a、b、c分別是△ABC的∠A、∠B、∠C的對邊(a>b).二次函數(shù)y=(x-2a)x-2b(x-a)+c2的圖象的頂點在x軸上,且sinA、sinB是關(guān)于x的方程(m+5)x2-(2m-5)x+m-8=0的兩個根.
(1)判斷△ABC的形狀,關(guān)說明理由;
(2)求m的值;
(3)若這個三角形的外接圓面積為25π,求△ABC的內(nèi)接正方形(四個頂點都在三角形三邊上)的邊長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,鉛球運動員擲鉛球的高度y(m)與水平距離x(m)之間的函數(shù)關(guān)系式是y=-
1
12
x2+
2
3
x+
5
3
,則該運動員此次擲鉛球的成績是______m.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

我市某工藝廠為配合2010年上海世博會,設(shè)計了一款成本為20元/件的工藝品投放市場進行試銷.該工藝品每天試銷情況經(jīng)過調(diào)查,得到如下數(shù)據(jù):
銷售單價x(元/件)30405060
每天銷售量y(件)500400300200
(1)把上表中x、y的各組對應(yīng)值作為點的坐標(biāo),在下面的平面直角坐標(biāo)系中描出相應(yīng)的點,猜想y與x的函數(shù)關(guān)系______;
(2)當(dāng)銷售單價定為多少時,工藝廠試銷該工藝品每天獲得的利潤W最大?(利潤=銷售總價-成本總價).
(3)當(dāng)?shù)匚飪r部門規(guī)定,該工藝品銷售單價最高不能超過45元/件,那么工藝廠試銷該工藝品每天獲得的利潤最大是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系xOy中,拋物線y=
1
18
x2-
4
9
x-10與y軸的交點為點B,過點B作x軸的平行線BC,交拋物線于點C,連接AC.現(xiàn)有兩動點P,Q分別從O,C兩點同時出發(fā),點P以每秒4個單位的速度沿OA向終點A移動,點Q以每秒1個單位的速度沿CB向點B移動,點P停止運動時,點Q也同時停止運動,線段OC,PQ相交于點D,過點D作DEOA,交CA于點E,射線QE交x軸于點F.設(shè)動點P,Q移動的時間為t(單位:秒).
(1)求A,B,C三點的坐標(biāo)和拋物線的頂點的坐標(biāo);
(2)當(dāng)t為何值時,四邊形PQCA為平行四邊形?請寫出計算過程;
(3)當(dāng)0<t<
9
2
時,△PQF的面積是否總為定值?若是,求出此定值,若不是,請說明理由;
(4)當(dāng)t為何值時,△PQF為等腰三角形?請寫出解答過程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,拋物線y=ax2-x-
3
2
與x軸正半軸交于點A(3,0),以O(shè)A為邊在x軸上方作正方形OABC,延長CB交拋物線于點D,再以BD為邊向上作正方形BDEF.
(1)求a的值;
(2)求點F的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知A,A是拋物線y=
1
2
x2上兩點,A1B1,A3B3分別垂直于x軸,垂足分別為B1,B3,點C是線段A1A3的中點,過點C作CB2垂直于x軸,垂足為B2,CB2交拋物線于點A2

(1)如圖1,已知A1,A3兩點的橫坐標(biāo)依次為1,3,求線段CA2的長;
(2)如圖2,若將拋物線y=
1
2
x2改為拋物線y=
1
2
x2-x+1,且A1,A2,A3三點的橫坐標(biāo)為連續(xù)的整數(shù),其他條件不變,求線段CA2的長;
(3)若將拋物線y=
1
2
x2改為拋物線y=ax2+bx+c(a>0),A1,A2,A3三點的橫坐標(biāo)為連續(xù)整數(shù),其他條件不變,試猜想線段CA2的長(用a,b,c表示,并直接寫出答案).

查看答案和解析>>

同步練習(xí)冊答案