【題目】如圖,數(shù)軸上有點a,b,c三點

(1)用“<”將a,b,c連接起來.

(2)b﹣a   1(填“<”“>”,“=”)

(3)化簡|c﹣b|﹣|c﹣a+1|+|a﹣1|

(4)用含a,b的式子表示下列的最小值:

①|(zhì)x﹣a|+|x﹣b|的最小值為   ;

②|x﹣a|+|x﹣b|+|x+1|的最小值為   ;

③|x﹣a|+|x﹣b|+|x﹣c|的最小值為   

【答案】(1) bac;(2) <;(3)b;(4)①ba;②b+1;③b-c.

【解析】

(1)比較有理數(shù)的大小可以利用數(shù)軸,它們從左到右的順序,即從小到大的順序(在數(shù)軸上表示的兩個有理數(shù),右邊的數(shù)總比左邊的數(shù)大);

(2)先求出b-a的范圍,再比較大小即可求解;

(3)先計算絕對值,再合并同類項即可求解;

(4)根據(jù)絕對值的性質(zhì)以及題意即可求出答案.

1)根據(jù)數(shù)軸上的點得:b>a>c;

(2)由題意得:b-a<1;

(3)|c-b|-|c-a+1|+|a-1|

=b-c-(a-c-1)+a-1

=b-c-a+c+1+a-1

=b;

(4)①當(dāng)xab之間時,|x-a|+|x-b|有最小值,

|x-a|+|x-b|的最小值為:x-a+b-x=b-a;

②當(dāng)x=a時,

|x-a|+|x-b|+|x+1|=0+b-x+x-(-1)=b+1為最小值;

③當(dāng)x=a時,

|x-a|+|x-b|+|x-c|=0+b-a+a-c=b-c為最小值.

故答案為:<;b-a;b+1;b-c.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB為一斜坡,其坡角為19.5°,緊挨著斜坡AB底部A處有一高樓,一數(shù)學(xué)活動小組量得斜坡長AB=15m,在坡頂B處測得樓頂D處的仰角為45°,其中測量員小剛的身高BC=1.7米,求樓高AD.
(參考數(shù)據(jù):sin19.5°≈ ,tan19.5°≈ ,最終結(jié)果精確到0.1m).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線C1:y=a(x+1)(x﹣3a)(a>0)與x軸交于A,B兩點(A在B的左側(cè)),與y軸交于點C(0,﹣3)
(1)求拋物線C1的解析式及A,B點坐標(biāo);
(2)求拋物線C1的頂點坐標(biāo);
(3)將拋物線C1向上平移3個單位長度,再向左平移n(n>0)個單位長度,得到拋物線C2 , 若拋物線C2的頂點在△ABC內(nèi),求n的取值范圍. (在所給坐標(biāo)系中畫出草圖C1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知a,b,c為非零的實數(shù),則的可能值的個數(shù)為( 。

A. 4 B. 5 C. 6 D. 7

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】△ABC中,∠BAC=90°,AB=AC,點D為直線BC上一動點(點D不與B,C重合),以AD為邊在AD右側(cè)作正方形ADEF,連接CF.

(1)觀察猜想

如圖1,當(dāng)點D在線段BC上時,

①BC與CF的位置關(guān)系為:   

②BC,CD,CF之間的數(shù)量關(guān)系為:   ;(將結(jié)論直接寫在橫線上)

(2)數(shù)學(xué)思考

如圖2,當(dāng)點D在線段CB的延長線上時,結(jié)論①,②是否仍然成立?若成立,請給予證明;若不成立,請你寫出正確結(jié)論再給予證明.

(3)拓展延伸

如圖3,當(dāng)點D在線段BC的延長線上時,延長BA交CF于點G,連接GE.若已知AB=2,CD=BC,請求出GE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果∠A和∠B互補,且∠A>∠B,給出下列四個式子:①90°﹣B;②∠A﹣90°;A+∠B)A﹣B)其中表示∠B余角的式子有_____.(填序號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下面的四個圖案中,既可用旋轉(zhuǎn)來分析整個圖案的形成過程,又可用軸對稱來分析整個圖案的形成過程的圖案有( )

A.4個 B.3個 C.2個 D.1個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知點(﹣1,y1),(4,y2)在一次函數(shù)y=3x﹣2的圖象上,則y1 , y2 , 0的大小關(guān)系是( )
A.0<y1<y2
B.y1<0<y2
C.y1<y2<0
D.y2<0<y1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD和四邊形DEFG都是正方形,點E,G分別在AD,CD上,連接AF,BF,CF.

(1)求證:AF=CF;

(2)若∠BAF=35°,求∠BFC的度數(shù).

查看答案和解析>>

同步練習(xí)冊答案