已知,Rt△ABC在平面直角坐標(biāo)系中的位置如圖所示,∠A=90°,點(diǎn)B、C都在x軸上,且點(diǎn)A的坐標(biāo)為(2,),∠ABC=30°,若拋物線y=ax2+bx+c恰好過A、B、C三點(diǎn),且與y軸交于點(diǎn)D.
(1)求點(diǎn)B、C的坐標(biāo)和拋物線y=ax2+bx+c的解析式;
(2)若點(diǎn)E是拋物線y=ax2+bx+c對(duì)稱軸上一動(dòng)點(diǎn),試確定當(dāng)點(diǎn)E在何處時(shí),△AEC的周長(zhǎng)最?最小是多少?
(3)若點(diǎn)P為拋物線在第一象限圖象上的動(dòng)點(diǎn),試確定當(dāng)點(diǎn)P在何處時(shí),四邊形PDBC的面積最大?并求出最大面積.

【答案】分析:(1)首先過點(diǎn)A作AF⊥x軸于點(diǎn)F,由點(diǎn)A的坐標(biāo)為(2,),∠ABC=30°,利用直角三角形的性質(zhì),即可求得點(diǎn)B與C的坐標(biāo),然后利用待定系數(shù)法即可求得二次函數(shù)的解析式;
(2)由(1),可求得拋物線的對(duì)稱軸,又由點(diǎn)B、C關(guān)于直線x=1對(duì)稱,求△AEC的周長(zhǎng)的最小值,即為求AE+EC+AC的最小值,由對(duì)稱性知,AE+EC的最小值為AB的長(zhǎng),即當(dāng)點(diǎn)E運(yùn)動(dòng)到AB與拋物線對(duì)稱軸x=1的交點(diǎn)處時(shí),△AEC的周長(zhǎng)最小,繼而可求得答案;
(3)首先連接結(jié)PO,設(shè)點(diǎn)P的坐標(biāo)為(t,-),過點(diǎn)P分別向 x軸,y軸作垂線,垂足分別為N、G,由S四邊形PDBC=S△POC+S△POD+S△BOD,即可求得答案.
解答:解:(1)過點(diǎn)A作AF⊥x軸于點(diǎn)F,在Rt△AFB中,
∵∠ABC=30°,點(diǎn)A的坐標(biāo)為(2,),
∴OF=2,AF=,∠ACF=60°,
∴BF==3,
∴OB=BF-OF=3-2=1,
∴點(diǎn)B的點(diǎn)標(biāo)為(-1,0),
在Rt△AFC中,由∠ACF=60°,
∴FC==1,
∴點(diǎn)C的坐標(biāo)為(3,0),
將A、B、C三點(diǎn)坐標(biāo)分別代入y=ax2+bx+c得:
,
解得:
∴該拋線的解析式為:y=-x2+x+…(4分)

(2)∵y=-x2+x+
=-(x-1)2+,
∴拋物線的對(duì)稱軸為x=1,
∴點(diǎn)B、C關(guān)于直線x=1對(duì)稱,
求△AEC的周長(zhǎng)的最小值,即為求AE+EC+AC的最小值,
由對(duì)稱性知,AE+EC的最小值為AB的長(zhǎng),即當(dāng)點(diǎn)E運(yùn)動(dòng)到AB與拋物線對(duì)稱軸x=1的交點(diǎn)處時(shí),△AEC的周長(zhǎng)最小,
由B(-1,0),A(2,)可得AB所在直線的解析式為:y=x+,…(7分)
當(dāng)x=1時(shí),y=,
故點(diǎn)E的坐標(biāo)為(1,),
此時(shí),△AEC的周長(zhǎng)最小,最小值為AB+AC=+2…(8分)

(3)連接結(jié)PO,設(shè)點(diǎn)P的坐標(biāo)為(t,-)其中O<t<3,
過點(diǎn)P分別向 x軸,y軸作垂線,垂足分別為N、G,
由(1)知,點(diǎn)D的坐標(biāo)為(0,)…(9分)
則S四邊形PDBC=S△POC+S△POD+S△BOD
=×OC×PN+×OD×PG+×OB×OD
=×3×(-)+××t+×1×
=…(11分)
故當(dāng)時(shí),四邊形PDBC的面積最大,最大面積為,
此時(shí)點(diǎn)P的坐標(biāo)為().…(12分)
點(diǎn)評(píng):此題考查了待定系數(shù)法求函數(shù)的解析式、三角形周長(zhǎng)最小值問題以及四邊形面積最小值問題.此題綜合性很強(qiáng),難度很大,解題的關(guān)鍵是注意數(shù)形結(jié)合思想與方程思想的應(yīng)用,注意準(zhǔn)確作出輔助線.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知,Rt△ABC在坐標(biāo)系中,如圖,∠A=90°,∠B=30°,C(-3,0),B(-9,0),
(1)將△ABC先向繞C順時(shí)針旋轉(zhuǎn)120°得到△A1B1C,則B1 的坐標(biāo)為
 
;
(2)將△ABC沿x軸向右平移m個(gè)單位得到△A2 B2C1,當(dāng)m=
 
時(shí),A2在y軸上;
(3)畫出△A1B1C和△A2 B2C1,并求出它們的重疊部分的面積.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:Rt△ABC在4×6的方格圖中的位置如圖,設(shè)每個(gè)小正方形的邊長(zhǎng)為一個(gè)長(zhǎng)度單位,請(qǐng)你先把△ABC以直角頂點(diǎn)為旋轉(zhuǎn)中心,按順時(shí)針方向旋轉(zhuǎn)90°后,再沿水平方向向右平行移動(dòng)三個(gè)單位長(zhǎng)度(保留圖形移動(dòng)的結(jié)果),寫出點(diǎn)C移動(dòng)的路徑總長(zhǎng)(用小正方形的長(zhǎng)度單位表示)
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知,Rt△ABC在平面直角坐標(biāo)系中的位置如圖所示,∠A=90°,點(diǎn)B、C都在x軸上,且點(diǎn)A的坐標(biāo)為(2,
3
),∠ABC=30°,若拋物線y=ax2+bx+c恰好過A、B、C三點(diǎn),且與y軸交于點(diǎn)D.
(1)求點(diǎn)B、C的坐標(biāo)和拋物線y=ax2+bx+c的解析式;
(2)若點(diǎn)E是拋物線y=ax2+bx+c對(duì)稱軸上一動(dòng)點(diǎn),試確定當(dāng)點(diǎn)E在何處時(shí),△AEC的周長(zhǎng)最?最小是多少?
(3)若點(diǎn)P為拋物線在第一象限圖象上的動(dòng)點(diǎn),試確定當(dāng)點(diǎn)P在何處時(shí),四邊形PDBC的面積最大?并求出最大面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年貴州省黔東南州正鈺中學(xué)中考數(shù)學(xué)一模試卷(解析版) 題型:解答題

已知,Rt△ABC在平面直角坐標(biāo)系中的位置如圖所示,∠A=90°,點(diǎn)B、C都在x軸上,且點(diǎn)A的坐標(biāo)為(2,),∠ABC=30°,若拋物線y=ax2+bx+c恰好過A、B、C三點(diǎn),且與y軸交于點(diǎn)D.
(1)求點(diǎn)B、C的坐標(biāo)和拋物線y=ax2+bx+c的解析式;
(2)若點(diǎn)E是拋物線y=ax2+bx+c對(duì)稱軸上一動(dòng)點(diǎn),試確定當(dāng)點(diǎn)E在何處時(shí),△AEC的周長(zhǎng)最小?最小是多少?
(3)若點(diǎn)P為拋物線在第一象限圖象上的動(dòng)點(diǎn),試確定當(dāng)點(diǎn)P在何處時(shí),四邊形PDBC的面積最大?并求出最大面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案