精英家教網(wǎng)在矩形紙片ABCD中,AB=6,BC=8.將矩形紙片沿BD折疊,使點A落在點E處,設DE與BC相交于點F,求BF的長.
分析:設BF=x,由折疊的性質(zhì)可知,DF=BF=x,CF=8-x,在Rt△CDF中,由勾股定理列方程求解.
解答:解:設BF=x,由折疊的性質(zhì)可知,DF=BF=x,CF=8-x,
在Rt△CDF中,CF2+CD2=DF2,
即(8-x)2+62=x2
解得x=
25
4
,即BF=
25
4
點評:本題考查了折疊的性質(zhì).關鍵是把已知線段與所求線段轉(zhuǎn)化到直角三角形中,運用勾股定理解題.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2013•太原)如圖,在矩形紙片ABCD中,AB=12,BC=5,點E在AB上,將△DAE沿DE折疊,使點A落在對角線BD上的點A′處,則AE的長為
10
3
10
3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•黃石模擬)如圖,在矩形紙片ABCD中,AB=3,BC=4.把△BCD沿對角線BD折疊,使點C落在E處,BE交AD于點F;
(1)求證:AF=EF;
(2)求tan∠ABF的值;
(3)連接AC交BE于點G,求AG的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在矩形紙片ABCD中,AB=6,BC=8,現(xiàn)將其沿EF對折,使得點C與點A重合,則AF的長為
25
4
cm
25
4
cm

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

動手操作:如圖,在矩形紙片ABCD中,AB=3,AD=5.如圖所示折疊紙片,使點A落在BC邊上的A′處,折痕為PQ,當點A′在BC邊上移動時,折痕的端點P、Q也隨之移動.若限定點P、Q分別在AB、AD邊上移動.
求:(1)當點Q與點D重合時,A′C的長是多少?
(2)點A′在BC邊上可移動的最大距離是多少?

查看答案和解析>>

同步練習冊答案