(2002•海淀區(qū))(1)求證:關(guān)于x的方程(n-1)x2十mx+1=0①有兩個(gè)相等的實(shí)數(shù)根.
關(guān)于y的方程m2y2-2my-m2-2n2+3=0②必有兩個(gè)不相等的實(shí)數(shù)根;
(2)若方程①的一根的相反數(shù)恰好是方程②的一個(gè)根,求代數(shù)式m2n十12n的值.
【答案】分析:(1)①有兩個(gè)相等的實(shí)數(shù)根,即方程的判別式△=0,即可得到關(guān)于m,n的一個(gè)等式,求證②必有兩個(gè)不相等的實(shí)數(shù)根,即證明根的判別式△>0.
(2)把(1)中根據(jù)①有兩個(gè)相等的實(shí)數(shù)根,即方程的判別式△=0,得到的關(guān)于m,n的一個(gè)等式,變形為用含m的代數(shù)式表示n的形式,消去方程①中的m,然后解方程①,求出方程的根,根據(jù)若方程①的一根的相反數(shù)恰好是方程②的一個(gè)根,即可求解.
解答:(1)證明:由方程①得n-1≠0,m2-4×(n-1)=0.
∴m2=4(n-1)且m≠0,則n-1>0.
方程②中△=4m2-4m2(-m2-2n2+3)=4m2(1+m2+2n2-3)=8m2(n+3)(n-1).
∵n-1>0.
∴△>0.方程②必有兩個(gè)不相等的實(shí)數(shù)根.

(2)解:由m2=4(n-1),得n-1=.代入第一個(gè)方程,得
x2+mx+1=0,解得x=-
代入第二個(gè)方程,得
m2×(2-2m×-m2-2n2+3=0.
整理得2n2+4n=7.
∴m2n十12n=n(m2+12)
=n(4n-4+12)
=4n2+8n
=2(2n2+4n)
=14.
點(diǎn)評(píng):△>0時(shí),一元二次方程才有2個(gè)不相等的實(shí)數(shù)根.注意運(yùn)用根與系數(shù)的關(guān)系使計(jì)算簡便.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2002年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(05)(解析版) 題型:解答題

(2002•海淀區(qū))已知:二次函數(shù)y=x2-kx+k+4的圖象與y軸交于點(diǎn)C,且與x軸的正半軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B左側(cè)).若A、B兩點(diǎn)的橫坐標(biāo)為整數(shù),
(1)確定這個(gè)二次函數(shù)的解析式并求它的頂點(diǎn)坐標(biāo);
(2)若點(diǎn)D的坐標(biāo)是(0,6),點(diǎn)P(t,0)是線段AB上的一個(gè)動(dòng)點(diǎn),它可與點(diǎn)A重合,但不與點(diǎn)B重合.設(shè)四邊形PBCD的面積為S,求S與t的函數(shù)關(guān)系式;
(3)若點(diǎn)P與點(diǎn)A重合,得到四邊形ABCD,以四邊形ABCD的一邊為邊,畫一個(gè)三角形,使它的面積等于四邊形ABCD的面積,并注明三角形高線的長.再利用“等底等高的三角形面積相等”的知識(shí),畫一個(gè)三角形,使它的面積等于四邊形ABCD的面積(畫示意圖,不寫計(jì)算和證明過程).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2002年全國中考數(shù)學(xué)試題匯編《反比例函數(shù)》(02)(解析版) 題型:填空題

(2002•海淀區(qū))已知函數(shù)y=kx的圖象經(jīng)過點(diǎn)(2,-6),則函數(shù)y=的解析式可確定為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2002年北京市海淀區(qū)中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2002•海淀區(qū))已知:二次函數(shù)y=x2-kx+k+4的圖象與y軸交于點(diǎn)C,且與x軸的正半軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B左側(cè)).若A、B兩點(diǎn)的橫坐標(biāo)為整數(shù),
(1)確定這個(gè)二次函數(shù)的解析式并求它的頂點(diǎn)坐標(biāo);
(2)若點(diǎn)D的坐標(biāo)是(0,6),點(diǎn)P(t,0)是線段AB上的一個(gè)動(dòng)點(diǎn),它可與點(diǎn)A重合,但不與點(diǎn)B重合.設(shè)四邊形PBCD的面積為S,求S與t的函數(shù)關(guān)系式;
(3)若點(diǎn)P與點(diǎn)A重合,得到四邊形ABCD,以四邊形ABCD的一邊為邊,畫一個(gè)三角形,使它的面積等于四邊形ABCD的面積,并注明三角形高線的長.再利用“等底等高的三角形面積相等”的知識(shí),畫一個(gè)三角形,使它的面積等于四邊形ABCD的面積(畫示意圖,不寫計(jì)算和證明過程).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2002年北京市海淀區(qū)中考數(shù)學(xué)試卷(解析版) 題型:填空題

(2002•海淀區(qū))已知函數(shù)y=kx的圖象經(jīng)過點(diǎn)(2,-6),則函數(shù)y=的解析式可確定為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2002年全國中考數(shù)學(xué)試題匯編《銳角三角函數(shù)》(04)(解析版) 題型:解答題

(2002•海淀區(qū))如圖,在菱形ABCD中,AE⊥BC于E點(diǎn),EC=1,sinB=,求四邊形AECD的周長.

查看答案和解析>>

同步練習(xí)冊答案