已知四邊形ABCD中,E,F(xiàn)分別是AB,AD邊上的點(diǎn),DE與CF交于點(diǎn)G.(1)如圖1,若四邊形ABCD是矩形,且DE⊥CF.則        (填“<”或“=”或“>”);

(2)如圖2,若四邊形ABCD是平行四邊形,試探究:

當(dāng)∠B與∠EGC滿足什么關(guān)系時(shí),使得=成立?并證明你的結(jié)論;

(3)如圖3,若BA=BC= 3,DA=DC= 4,∠BAD= 90°,DE⊥CF.則的值為        

圖1                      圖2                      圖3

 

【答案】

(1)=;(2)∠B=∠EGC;(3).

【解析】

試題分析:(1)根據(jù)矩形性質(zhì)得出∠A=∠FDC=90°,求出∠CFD=∠AED,證出△AED∽△DFC即可; 

(2)當(dāng)∠B+∠EGC=180°時(shí),成立,證△DFG∽△DEA,得出,證△CGD∽△CDF,得出,即可得出答案; 

(3)過C作CN⊥AD于N,CM⊥AB交AB延長(zhǎng)線于M,連接BD,設(shè)CN=x,△BAD≌△BCD,推出∠BCD=∠A=90°,證△BCM∽△DCN,求出CM=x,在Rt△CMB中,由勾股定理得出,代入得出方程,求出CN=,證出△AED∽△NFC,即可得出答案. 

試題解析:(1)證明:∵四邊形ABCD是矩形,

∴∠A=∠FDC=90°,

∵CF⊥DE,

 ∴∠DGF=90°,

∴∠ADE+∠CFD=90°,∠ADE+∠AED=90°,

∴∠CFD=∠AED,

∵∠A=∠CDF,

∴△AED∽△DFC,

 ∴,即=.

(2)當(dāng)∠B+∠EGC=180°時(shí),=成立.

證明:∵四邊形ABCD是平行四邊形,

∴∠B=∠ADC,AD∥BC,

∴∠B+∠A=180°,

∵∠B+∠EGC=180°,

 ∴∠A=∠EGC=∠FGD,

∵∠FDG=∠EDA,

 ∴△DFG∽△DEA,

,

∵∠B=∠ADC,∠B+∠EGC=180°,∠EGC+∠DGC=180°,

 ∴∠CGD=∠CDF,

∵∠GCD=∠DCF,

∴△CGD∽△CDF,

 ∴,

,

,

即當(dāng)∠B+∠EGC=180°時(shí),成立.

(3)解:

理由是:過C作CN⊥AD于N,CM⊥AB交AB延長(zhǎng)線于M,連接BD,設(shè)CN=x,

∵AB⊥AD,

∴∠A=∠M=∠CNA=90°,

 ∴四邊形AMCN是矩形,

∴AM=CN,AN=CM,

∵在△BAD和△BCD中

 

∴△BAD≌△BCD(SSS),

 ∴∠BCD=∠A=90°,

∴∠ABC+∠ADC=180°,

∵∠ABC+∠CBM=180°,

∴∠CBM=∠ADC,

∵∠CND=∠M=90°,

∴△BCM∽△DCN,

,

在Rt△CMB中,,BM=AM﹣AB=x﹣6,由勾股定理得:,

 ∴,

解得 x=0(舍去),x=

∴CN=,

∵∠A=∠FGD=90°,

 ∴∠AED+∠AFG=180°,

∵∠AFG+∠NFC=180°,

 ∴∠AED=∠CFN,

∵∠A=∠CNF=90°,

∴△AED∽△NFC,

考點(diǎn): 相似三角形綜合題.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知四邊形ABCD中,BC=CD=DB,∠ADB=90°,cos∠ABD=
45

求S△ABD:S△BCD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

26、已知四邊形ABCD中,AB=BC=CD,∠B=90°,根據(jù)這樣的條件,能判定這個(gè)四邊形是正方形嗎?若能,請(qǐng)你指出判定的依據(jù);若不能,請(qǐng)舉出一個(gè)反例(即畫出一個(gè)四邊形滿足上述條件,但不是正方形),并指出若再添加一個(gè)什么條件,就可以判定這個(gè)四邊形是正方形,你能指出幾種情況嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知四邊形ABCD中,給出下列四個(gè)論斷:(1)AB∥CD,(2)AB=CD,(3)AD=BC,(4)AD∥BC.以其中兩個(gè)論斷作為條件,余下兩個(gè)作為結(jié)論,可以構(gòu)成一些命題.在這些命題中,正確命題的個(gè)數(shù)有( 。
A、2個(gè)B、3個(gè)C、4個(gè)D、6個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

選做題:(A)已知四邊形ABCD中,AD∥BC,對(duì)角線AC、BD交于點(diǎn)O,∠OBC=∠OCB,并且
 
,求證:四邊形ABCD是
 
形.(要求在已知條件中的橫線上補(bǔ)上一個(gè)條件
 
,在求證中的橫線上添上該四邊形的形狀,然后畫出圖形,予以證明,證明時(shí)要用上所有條件)
(B)某市市委、市府2001年提出“工業(yè)立市”的口號(hào),積極招商引資,財(cái)政收入穩(wěn)步增長(zhǎng),各年度財(cái)政收入如下表:
年 份 2001 2002 2003 2004
財(cái)政收入
單位(億元)
10 10.5 12 14.5
按這種增長(zhǎng)趨勢(shì),請(qǐng)你算一算2006年該市的財(cái)政收入是多少億元.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知四邊形ABCD中,E、F、G、H分別為AB、BC、CD、DA的中點(diǎn),
①求證:四邊形EFGH是平行四邊形.
②探索下列問題,并選擇一個(gè)進(jìn)行證明.
a.原四邊形ABCD的對(duì)角線AC、BD滿足
AC⊥BD
AC⊥BD
時(shí),四邊形EFGH是矩形.
b.原四邊形ABCD的對(duì)角線AC、BD滿足
AC=BD
AC=BD
時(shí),四邊形EFGH是菱形.
c.原四邊形ABCD的對(duì)角線AC、BD滿足
AC⊥BD且AC=BD
AC⊥BD且AC=BD
時(shí),四邊形EFGH是正方形.

查看答案和解析>>

同步練習(xí)冊(cè)答案