【題目】一個(gè)多項(xiàng)式加上5x2﹣4x﹣3﹣x2﹣3x,則這個(gè)多項(xiàng)式為( )

A. 4x2﹣7x﹣3 B. 6x2﹣x﹣3 C. ﹣6x2+x+3 D. ﹣6x2﹣7x﹣3

【答案】C

【解析】

試題本題涉及添括號(hào)和去括號(hào)法則、合并同類項(xiàng)兩個(gè)考點(diǎn),解答時(shí)根據(jù)每個(gè)考點(diǎn)作出回答.

根據(jù)已知條件可設(shè)此多項(xiàng)式為M建立等式解得即可.

解:設(shè)這個(gè)多項(xiàng)式為M,

M=﹣x2﹣3x5x2﹣4x﹣3

=﹣x2﹣3x﹣5x2+4x+3

=﹣6x2+x+3

故選C

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】等腰三角形ABC的周長(zhǎng)為13cm,AB=5cm

1)若AB是底,則AC的長(zhǎng)為_____________cm

2)若AB是腰,則AC的長(zhǎng)為_____________cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】平行四邊形的底是n,高是h,它的面積S=_____,若n=b,h=4,則S=_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+c的圖象與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊),與y軸交于點(diǎn)C,點(diǎn)A、C的坐標(biāo)分別為(-1,0),(0,-3),直線x=1為拋物線的對(duì)稱軸.點(diǎn)D為拋物線的頂點(diǎn),直線BC與對(duì)稱軸相較于點(diǎn)E.

(1)求拋物線的解析式并直接寫出點(diǎn)D的坐標(biāo);

(2)點(diǎn)P為直線x=1右方拋物線上的一點(diǎn)(點(diǎn)P不與點(diǎn)B重合).記A、B、C、P四點(diǎn)所構(gòu)成的四邊形面積為S,若S=S△BCD,求點(diǎn)P的坐標(biāo);

(3)點(diǎn)Q是線段BD上的動(dòng)點(diǎn),將DEQ延邊EQ翻折得到D′EQ,是否存在點(diǎn)Q使得D′EQ與BEQ的重疊部分圖形為直角三角形?若存在,請(qǐng)求出BQ的長(zhǎng),若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】先化簡(jiǎn),再求值:(2x+3y﹣4y﹣3x+y),其中x=﹣3y=2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為加強(qiáng)中小學(xué)生安全和禁毒教育,某校組織了“防溺水、交通安全、禁毒”知識(shí)競(jìng)賽,為獎(jiǎng)勵(lì)在競(jìng)賽中表現(xiàn)優(yōu)異的班級(jí),學(xué)校準(zhǔn)備從體育用品商場(chǎng)一次性購(gòu)買若干個(gè)足球和籃球(每個(gè)足球的價(jià)格相同,每個(gè)籃球的價(jià)格相同),購(gòu)買1個(gè)足球和1個(gè)籃球共需159元;足球單價(jià)是籃球單價(jià)的2倍少9元.

(1)求足球和籃球的單價(jià)各是多少元?

(2)根據(jù)學(xué)校實(shí)際情況,需一次性購(gòu)買足球和籃球共20個(gè),但要求購(gòu)買足球和籃球的總費(fèi)用不超過(guò)1550元,學(xué)校最多可以購(gòu)買多少個(gè)足球?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AB邊的垂直平分線l1交BC于點(diǎn)D,AC邊的垂直平分線l2交BC于點(diǎn)E,l1與l2相交于點(diǎn)O,連接0B,OC,若△ADE的周長(zhǎng)為6cm,△OBC的周長(zhǎng)為16cm.

(1)求線段BC的長(zhǎng);

(2)連接OA,求線段OA的長(zhǎng);

(3)若∠BAC=120°,求∠DAE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若|a|=7,|b|=3,且a+b>0,ab<0,則a=_________,b=__________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若3x=4,3y=5,則3x+2y的值為

查看答案和解析>>

同步練習(xí)冊(cè)答案