如圖所示,E、F分別是正方形ABCD的邊CD,AD上的點,且CE=DF,AE,BF相交于點O,下列結(jié)論①AE=BF;②AE⊥BF;③AO=OE;④S△AOB=S四邊形DEOF中,錯誤的有( )

A.1個
B.2個
C.3個
D.4個
【答案】分析:根據(jù)四邊形ABCD是正方形及CE=DF,可證出△ADE≌△BAF,則得到:①AE=BF,以及△ADE和△BAF的面積相等,得到;④S△AOB=S四邊形DEOF;可以證出∠ABO+∠BAO=90°,則②AE⊥BF一定成立.錯誤的結(jié)論是:③AO=OE.
解答:解:∵四邊形ABCD是正方形,
∴CD=AD
∵CE=DF
∴DE=AF
∴△ADE≌△BAF
∴①AE=BF,S△ADE=S△BAF,∠DEA=∠AFB,∠EAD=∠FBA
∴④S△AOB=S四邊形DEOF
∵∠ABF+∠AFB=∠DAE+∠DEA=90°
∴∠AFB+∠EAF=90°
∴②AE⊥BF一定成立.
錯誤的結(jié)論是:③AO=OE.
故選A.
點評:本題考查了全等三角形的判定和正方形的判定和性質(zhì).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

邊長為4的正△AOB的OA邊在x軸的正半軸上,點B在第一象限,如圖所示,一雙曲線精英家教網(wǎng)分別交AB、OB于D、C兩點,其中D為AB中點
(1)求雙曲線的解析式;
(2)將△AOB向右平移,當(dāng)C為OB中點時,求平移的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

19、如圖所示的正方體表面分別標(biāo)上字母A~F,問這個正方體各個面上的字母對面各是什么字母?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

15、如圖所示,這個風(fēng)鈴分別由正三、正四、正五、正六、正八、正十和正十二邊形的飾物組成,共重144克,(假設(shè)繩子和橫桿的重量為0),請你計算出每個正多邊形飾物的重量.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•石景山區(qū)二模)如圖所示,圓圈內(nèi)分別標(biāo)有1,2,…,12,這12個數(shù)字,電子跳蚤每跳一步,可以從一個圓圈逆時針跳到相鄰的圓圈,若電子跳蚤所在圓圈的數(shù)字為n,則電子跳蚤連續(xù)跳(3n-2)步作為一次跳躍,例如:電子跳蚤從標(biāo)有數(shù)字1的圓圈需跳3×1-2=1步到標(biāo)有數(shù)字2的圓圈內(nèi),完成一次跳躍,第二次則要連續(xù)跳3×2-2=4步到達(dá)標(biāo)有數(shù)字6的圓圈,…依此規(guī)律,若電子跳蚤從①開始,那么第3次能跳到的圓圈內(nèi)所標(biāo)的數(shù)字為
10
10
;第2012次電子跳蚤能跳到的圓圈內(nèi)所標(biāo)的數(shù)字為
6
6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,下列實物分別接近于什么立體圖形?請寫在每個圖下面的括號內(nèi).

查看答案和解析>>

同步練習(xí)冊答案