【題目】七年級(jí)數(shù)學(xué)研究學(xué)習(xí)小組在某字路口隨機(jī)調(diào)查部分市民對(duì)社會(huì)主義核心價(jià)值觀的了解情況,統(tǒng)計(jì)結(jié)果后繪制了如圖的兩副不完整的統(tǒng)計(jì)圖,請(qǐng)結(jié)合圖中相關(guān)數(shù)據(jù)回答下列問題:

得分

1)本次調(diào)查的總?cè)藬?shù)為 人, 在扇形統(tǒng)計(jì)圖中心所在扇形的圓心角的度數(shù)為

2)補(bǔ)全頻數(shù)分布圖:

3)若在這周里,該路口共有人通過,請(qǐng)估計(jì)得分超過的約有多少人?

【答案】1200,108°;(2)見解析;(311000.

【解析】

1)由B組人數(shù)及其所占百分比可得總?cè)藬?shù),用360°乘以C組的人數(shù)所占比例可得;
2)根據(jù)各組人數(shù)之和等于總?cè)藬?shù)求得D組人數(shù)即可補(bǔ)全圖形;
3)用總?cè)藬?shù)乘以樣本中D、E組人數(shù)和所占比例.

解:解:(1)本次調(diào)查的總?cè)藬?shù)為20÷10%=200人,在扇形統(tǒng)計(jì)圖中“C”所在扇形的圓心角的度數(shù)為360°×=108°,
故答案為:200、108°;
(2)80<n≤90的人數(shù)為200-(10+20+60+20)=90,
補(bǔ)全頻數(shù)分布圖如下:

3)估計(jì)得分超過80的大約有

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知A(4,2)B(a,4)是一次函數(shù)y=kx+b的圖象與反比例函數(shù)的圖象的兩個(gè)交點(diǎn);

(1)求此反比例函數(shù)和一次函數(shù)的解析式;

(2)根據(jù)圖象寫出使一次函數(shù)的值小于反比例函數(shù)的值的x的取值范圍;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:關(guān)于x的方程kx23k﹣1x+2k﹣1=0

1)求證:無論k為任何實(shí)數(shù),方程總有實(shí)數(shù)根;

2)若此方程有兩個(gè)實(shí)數(shù)根x1,x2,且|x1﹣x2|=2,求k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ACB中,∠ACB=90°,AC=BC=3,CD=1,CH⊥BD于H,點(diǎn)O是AB中點(diǎn),連接OH,則OH=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某次歌唱比賽,三名選手的成績(jī)?nèi)缦拢?/span>

測(cè)試項(xiàng)目

測(cè)試成績(jī)

創(chuàng)新

72

85

67

唱功

62

77

76

綜合知識(shí)

88

45

67

(1)若按三項(xiàng)的平均值取第一名,誰是第一名?

(2)若三項(xiàng)測(cè)試得分按3:6:1的比例確定個(gè)人的測(cè)試成績(jī),誰是第一名?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,下列條件之一能使平行四邊形ABCD是菱形的為_____________

ACBD;②∠BAD=90°;③AB=BC;④AC=BD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在數(shù)軸上有三個(gè)點(diǎn)、、,如圖所示.

(1)將點(diǎn)向左平移4個(gè)單位,此時(shí)該點(diǎn)表示的數(shù)是________;

(2)將點(diǎn)向左平移3個(gè)單位得到數(shù),再向右平移2個(gè)單位得到數(shù),則分別是多少?

(3)怎樣移動(dòng)、中的兩點(diǎn),使三個(gè)點(diǎn)表示的數(shù)相同?你有幾種方法?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,正三角形OAB的頂點(diǎn)B的坐標(biāo)為(2,0),點(diǎn)A在第一象限內(nèi),將△OAB沿直線OA的方向平移至△O′A′B′的位置,此時(shí)點(diǎn)A′的橫坐標(biāo)為3,則點(diǎn)B′的坐標(biāo)為( 。

A. 4,2 B. 3,3 C. 4,3 D. 32

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線軸交于點(diǎn)A-4,0)和B1,0)兩點(diǎn),與y軸交于C點(diǎn).

(1)求此拋物線的解析式;

(2)設(shè)E是線段AB上的動(dòng)點(diǎn),作EFACBCF,連接CE,當(dāng)△CEF的面積是△BEF面積的2倍時(shí),求E點(diǎn)的坐標(biāo);

(3)P為拋物線上A、C兩點(diǎn)間的一個(gè)動(dòng)點(diǎn),過Py軸的平行線,交ACQ,當(dāng)P點(diǎn)運(yùn)動(dòng)到什么位置時(shí),線段PQ的值最大,并求此時(shí)P點(diǎn)的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案