過點(5,-3)和點(5,-3)的直線一定

[  ]
A.

垂直于x

B.

平行于x

C.

y軸重合

D.

x軸、y軸都相交

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如果一個點能與另外兩個點能構(gòu)成直角三角形,則稱這個點為另外兩個點的勾股點.例如:矩形ABCD中,點C與A,B兩點可構(gòu)成直角三角形ABC,則稱點C為A,B兩點的勾股點.同樣,點D也是A,B兩點的勾股點.
(1)如圖1,矩形ABCD中,AB=2,BC=1,請在邊CD上作出A,B兩點的勾股點(點C和點D除外)(要求:尺規(guī)作圖,保留作圖痕跡,不要求寫作法);
精英家教網(wǎng)精英家教網(wǎng)
(2)矩形ABCD中,AB=3,BC=1,直接寫出邊CD上A,B兩點的勾股點的個數(shù);
(3)如圖2,矩形ABCD中,AB=12,BC=4,DP=4,DM=8,AN=5.過點P作直線l平行于BC,點H為M,N兩點的勾股點,且點H在直線l上.求PH的長.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知一次函數(shù)y=-x+7與正比例函數(shù)y=
43
x的圖象交于點A,且與x軸交于點B.
(1)求點A和點B的坐標(biāo);
(2)過點A作AC⊥y軸于點C,過點B作直線l∥y軸.動點P從點O出發(fā),以每秒1個單位長的速度,沿O-C-A的路線向點A運動;同時直線l從點B出發(fā),以相同速度向左平移,在平移過程中,直線l交x軸于點R,交線段BA或線段AO于點Q.當(dāng)點P到達(dá)點A時,點P和直線l都停止運動.在運動過程中,設(shè)動點P運動的時間為t秒.
①當(dāng)t為何值時,以A、P、R為頂點的三角形的面積為8?
②是否存在以A、P、Q為頂點的三角形是等腰三角形?若存在,求t的值;若不存在,請說明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(1)動手操作:
如圖①,將矩形紙片ABCD折疊,使點D與點B重合,點C落在點c'處,折痕為EF,若∠ABE=20°,那么∠EFC'的度數(shù)為
 

(2)觀察發(fā)現(xiàn):
小明將三角形紙片ABC(AB>AC)沿過點A的直線折疊,使得AC落在AB邊上,折痕為AD,展開紙片(如圖②);再次折疊該三角形紙片,使點A和點D重合,折痕為EF,展平紙片后得到△AEF(如圖③).小明認(rèn)為△AEF是等腰三角形,你同意嗎?請說明理由.
精英家教網(wǎng)
(3)實踐與運用:
將矩形紙片ABCD 按如下步驟操作:將紙片對折得折痕EF,折痕與AD邊交于點E,與BC邊交于點F;將矩形ABFE與矩形EFCD分別沿折痕MN和PQ折疊,使點A、點D都與點F重合,展開紙片,此時恰好有MP=MN=PQ(如圖④),求∠MNF的大。
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•中山區(qū)一模)如圖,在平面直角坐標(biāo)系中,Rt△AOC的直角邊OC在y軸正半軸,且頂點O與坐標(biāo)原點重合,點A的坐標(biāo)為(2,4),直線y=-x+b過點A,與x軸交點B.

(1)點B的坐標(biāo)為
(6,0)
(6,0)

(2)動點P從點O出發(fā),以每秒1個單位長的速度,沿O-C-A的路線向點A運動,同時動點M從點B出發(fā),以相同的速度沿BO的方向向O運動,過點M作MQ⊥x軸,交線段BA或線段AO于點Q,當(dāng)點P到達(dá)A點時,點P和點M都停止運動.在運動過程中,設(shè)動點P運動的時間為t秒.
①設(shè)△APQ的面積為S,求S關(guān)于t的函數(shù)關(guān)系式;
②是否存在以M、P、Q為頂點的三角形的面積與S相等?若存在,求t的值,若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

觀察與發(fā)現(xiàn):
(1)小明將三角形紙片ABC(AB>AC)沿過點A的直線折疊,使得AC落在AB邊上,折痕為AD,展開紙片(如圖①);再次折疊該三角形紙片,使點A和點D重合,折痕為EF,展平紙片后得到△AEF(如圖②).你認(rèn)為△AEF是什么形狀的三角形?為什么?
精英家教網(wǎng)
實踐與運用:
如圖,將矩形紙片ABCD按如下順序進(jìn)行折疊:對折、展平,得折痕EF(如圖①);沿GC折疊,使點B落在EF上的點B′處(如圖②);展平,得折痕GC(如圖③);沿GH折疊,使點C落在DH上的點C′處(如圖④);沿GC′折疊(如圖⑤);展平,得折痕GC′、GH(如圖⑥).
(2)在圖②中連接BB′,判斷△BCB′的形狀,請說明理由;
(3)圖⑥中的△GCC′是等邊三角形嗎?請說明理由.
精英家教網(wǎng)

查看答案和解析>>

同步練習(xí)冊答案