【題目】如圖①,在△ABC 中,AD平分∠BAC,AE⊥BC,∠B=40°,∠C=70°.
(1)求∠DAE的度數(shù);
(2)如圖②,若把“AE⊥BC”變成“點F在DA的延長線上,F(xiàn)E⊥BC”,其它條件不變,求∠DFE的度數(shù).

【答案】
(1)解:∵∠B=40°,∠C=70°,

∴∠BAC=70°.

∵CF平分∠DCE,

∴∠BAD=∠CAD=35°,

∴∠ADE=∠B+∠BAD=75°.

∵AE⊥BC,

∴∠AEB=90°,

∴∠DAE=90°﹣∠ADE=15°


(2)解:同(1),可得∠ADE=75°.

∵FE⊥BC,

∴∠FEB=90°,

∴∠DFE=90°﹣∠ADE=15°


【解析】(1)先根據(jù)三角形內(nèi)角和定理求出∠BAC的度數(shù),再由角平分線的定義得出∠BAD的度數(shù),再由AE⊥BC得出∠AEB=90°,進而可得出結(jié)論;(2)同(1),可得∠ADE=75°,再由FE⊥BC可知∠FEB=90°,根據(jù)∠DFE=90°﹣∠ADE可得出結(jié)論.
【考點精析】利用三角形的內(nèi)角和外角對題目進行判斷即可得到答案,需要熟知三角形的三個內(nèi)角中,只可能有一個內(nèi)角是直角或鈍角;直角三角形的兩個銳角互余;三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和;三角形的一個外角大于任何一個和它不相鄰的內(nèi)角.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,A市氣象站測得臺風中心在A市正東方向300千米的B處,以10 千米/時的速度向北偏西60°的BF方向移動,距臺風中心200千米范圍內(nèi)是受臺風影響的區(qū)域.

(1)A市是否會受到臺風的影響?寫出你的結(jié)論并給予說明;
(2)如果A市受這次臺風影響,那么受臺風影響的時間有多長?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】拋物線y=x2-9x軸的兩個交點之間的距離為______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知AB是⊙O的直徑,BC是⊙O的切線,B為切點,OC平行于弦AD,連接CD。過點D作DE⊥AB于E,交AC于點P,求證:點P平分線段DE。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,點A的橫坐標為﹣1,點B在x軸的負半軸上,AB=AO,∠ABO=30°,直線MN經(jīng)過原點O,點A關(guān)于直線MN的對稱點A1在x軸的正半軸上,點B關(guān)于直線MN的對稱點為B1 , 則∠AOM的度數(shù)為;點B1的縱坐標為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若|x+3|+(5﹣y)2=0,則x+y=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若點P(2m+4,3m+3)在x軸上,則點P的坐標為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,四邊形OABC是平行四邊形.直線L經(jīng)過O、C兩點.點A的坐標為(8,0),點B的坐標為(11,4),動點P在線段OA上從點O出發(fā)以每秒1個單位的速度向點A運動,同時動點Q從點A出發(fā)以每秒2個單位的速度沿A→B→C的方向向點C運動,過點PPM垂直于x軸,與折線OC﹣B相交于點M.當Q、M兩點相遇時,P、Q兩點停止運動,設點P、Q運動的時間為t秒(t>0).MPQ的面積為S.

(1)點C的坐標為 ,直線L的解析式為

(2)試求點Q與點M相遇前St的函數(shù)關(guān)系式,并寫出相應的t的取值范圍.

(3)試求題(2)中當t為何值時,S的值最大,并求出S的最大值.

(4)隨著P、Q兩點的運動,當點M在線段CB上運動時,設PM的延長線與直線L相交于點N.試探究:當t為何值時,QMN為等腰三角形?請直接寫出t的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】填空:(1)a6÷a2=a6___2=a___;

(2)(-a)3÷(-a)2______)(_________

查看答案和解析>>

同步練習冊答案