【題目】結(jié)合數(shù)軸與絕對(duì)值的知識(shí)回答下列問題:

1)探究:

①數(shù)軸上表示的兩點(diǎn)之間的距離是 ;

②數(shù)軸上表示的兩點(diǎn)之間的距離是 ;

③數(shù)軸上表示的兩點(diǎn)之間的距離是 ;

2)歸納:

一般的,數(shù)軸上表示數(shù)m與數(shù)n的兩點(diǎn)之間的距離等于 .

3)應(yīng)用:

①如果表示數(shù)3的兩點(diǎn)之間的距離是9,則可記為:,那么 .

②若數(shù)軸上表示數(shù)的點(diǎn)位于之間,求的值.

【答案】13,6,7;(2);(3)①12或-6;②9.

【解析】

1)根據(jù)數(shù)軸上點(diǎn)坐標(biāo)的意義,可得答案;

2)由(1)的計(jì)算即可得出規(guī)律.

3)①根據(jù)數(shù)軸上到3距離等于9的點(diǎn)有12-6,即可解答;

②根據(jù)絕對(duì)值的性質(zhì)去掉絕對(duì)值號(hào),然后計(jì)算即可得解.

解:(1)探究:①數(shù)軸上表示41的兩點(diǎn)之間的距離是,②數(shù)軸上表示的兩點(diǎn)之間的距離=,③數(shù)軸上表示5的兩點(diǎn)之間的距離=

故答案為:3,6,7.

2)由(1)可知數(shù)軸上表示數(shù)m與數(shù)n的兩點(diǎn)之間的距離=,

故答案為:.

3)①如果表示數(shù)3的兩點(diǎn)之間的距離是9,則可記為:,那么,

故答案為:12;

②若數(shù)軸上表示數(shù)的點(diǎn)位于5之間,則,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,BD為一條對(duì)角線,,,EAD的中點(diǎn),連接BE

1)求證:四邊形BCDE為菱形;

2)連接AC,若AC平分,,求AC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某塔觀光層的最外沿點(diǎn)E為蹦極項(xiàng)目的起跳點(diǎn).已知點(diǎn)E離塔的中軸線AB的距離OE為10米,塔高AB為123米(AB垂直地面BC),在地面C處測(cè)得點(diǎn)E的仰角α=45°,從點(diǎn)C沿CB方向前行40米到達(dá)D點(diǎn),在D處測(cè)得塔尖A的仰角β=60°,求點(diǎn)E離地面的高度EF.(結(jié)果精確到0.1米)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明和小剛相約周末到雪蓮大劇院看演出,他們的家分別距離劇院1200m2000m,兩人分別從家中同時(shí)出發(fā),已知小明和小剛的速度比是3:4,結(jié)果小明比小剛提前4min到達(dá)劇院.求兩人的速度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=a(x﹣1)(x﹣3)(a>0)與x軸交于A、B兩點(diǎn),拋物線上另有一點(diǎn)Cx軸下方,且使OCA∽△OBC.

(1)求線段OC的長(zhǎng)度;

(2)設(shè)直線BCy軸交于點(diǎn)M,點(diǎn)CBM的中點(diǎn)時(shí),求直線BM和拋物線的解析式;

(3)在(2)的條件下,直線BC下方拋物線上是否存在一點(diǎn)P,使得四邊形ABPC面積最大?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綜合與實(shí)踐

已知,都是不等于0的有理數(shù),若,求的值.

解:當(dāng)時(shí),;當(dāng)時(shí),,所以參照以上解答,試探究以下問題:

1)若,求的值

2)若,則的值為__________;

3)由(1)、(2)試猜想,共有__________個(gè)不同的值,在這些不同的值中,最大的值和最小的值的差等于__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】觀察下面三行數(shù):

1)第①行數(shù)按什么規(guī)律排列?

2)第②③行數(shù)與第①行數(shù)分別有什么關(guān)系;

3)設(shè)分別為第①②③行的2012個(gè)數(shù),求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】兩個(gè)大小不同的等腰直角三角板如圖1所示放置,圖2是由它抽象出的幾何圖形,圖中AB=AC,AD=AE,∠BAC=∠EAD=90°B,C,E在同一條直線上,連結(jié)DC

(1)圖2中的全等三角形是_______________,并給予證明(說明:結(jié)論中不得含有未標(biāo)識(shí)的字母);

2)指出線段DC和線段BE的關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】墻上釘著用一根彩繩圍成的梯形形狀的飾物,如圖實(shí)線所示(單位:cm).小穎將梯形下底的釘子去掉,并將這條彩繩釘成一個(gè)長(zhǎng)方形,如圖虛線所示.小穎所釘長(zhǎng)方形的長(zhǎng)、寬各為多少厘米?如果設(shè)長(zhǎng)方形的長(zhǎng)為xcm,根據(jù)題意,可得方程為( 。

A.2x+10)=10×4+6×2B.2x+10)=10×3+6×2

C.2x+1010×4+6×2D.2x+10)=10×2+6×2

查看答案和解析>>

同步練習(xí)冊(cè)答案