精英家教網 > 初中數學 > 題目詳情
如圖,拋物線經過A,C,D三點,且三點坐標為A(-1,0),C(0,5),D(2,5),拋物線與x軸的另一個交點為B點,點F為y軸上一動點,作平行四邊形DFBG,
(1)B點的坐標為______;
(2)是否存在F點,使四邊形DFBG為矩形?如存在,求出F點坐標;如不存在,說明理由;
(3)連結FG,F(xiàn)G的長度是否存在最小值?如存在求出最小值;若不存在說明理由;
(4)若E為AB中點,找出拋物線上滿足到E點的距離小于2的所有點的橫坐標x的范圍:______.
(1)∵C(0,5),D(2,5),
∴拋物線的對稱軸為直線x=
2
2
=1,
∵A(-1,0),
∴2×1-(-1)=3,
∴點B的坐標為(3,0);

(2)如圖,連接CD,則∠DCF=90°,
∵四邊形DFBG為矩形,
∴∠DFC+∠OFB=180°-90°=90°,
∴∠DFB=90°
∵∠OFB+∠OBF=90°,
∴∠DFC=∠OBF,
又∵∠DCF=∠FOB=90°,
∴△CDF△OFB,
CD
OF
=
CF
OB
,
∵B(3,0),C(0,5),D(2,5),
∴CD=2,OB=3,OC=5,
∴CF=5-OF,
2
OF
=
5-OF
3
,
整理得,OF2-5OF+6=0,
解得OF=2或OF=3,
∴點F的坐標為(0,2)或(0,3);

(3)連接BD,設FG、BD相交于點H,
∵四邊形DFBG是平行四邊形,
∴FG、BD互相平分,
∴FG=2FH,
又∵B(3,0),D(2,5),
∴點H的坐標為(2.5,2.5),
根據垂線段最短,F(xiàn)H⊥y軸時,F(xiàn)H最短,
此時,F(xiàn)H=2.5,
FG=2FH=2×2.5=5;

(4)設拋物線解析式為y=a(x-1)2+k(a≠0),
把點A、C的坐標代入得,
4a+k=0
a+k=5
,
解得
a=-
5
3
k=
20
3
,
∴拋物線解析式為y=-
5
3
(x-1)2+
20
3
,
∵E為AB中點,
∴點E的坐標為(1,0),
∴以E為圓心,以2為半徑的圓為(x-1)2+y2=4,
與拋物線解析式聯(lián)立消掉(x-1)2得,-
5
3
(4-y2)+
20
3
=y,
整理得,5y2-3y=0,
解得y1=0,y2=
3
5

y=
3
5
時,-
5
3
(x-1)2+
20
3
=
3
5
,
整理得,(x-1)2=
91
25
,
解得x1=
5-
91
5
,x2=
5+
91
5
,
∴-1<x<
5-
91
5
5+
91
5
<x<3時,拋物線上的點到E點的距離小于2.
故答案為:(1)(3,0);(4)-1<x<
5-
91
5
5+
91
5
<x<3.
練習冊系列答案
相關習題

科目:初中數學 來源:不詳 題型:解答題

(2一g一•昆明)在平面直角坐標系v,拋物線經過O(一,一)、A(4,一)、E(九,-
2
)三點.
(g)求此拋物線的解析式;
(2)以OA的v點M為圓心,OM長為半徑作⊙M,在(g)v的拋物線上是否存在這樣的點P,過點P作⊙M的切線l,且l與x軸的夾角為九一°?若存在,請求出此時點P的坐標;若不存在,請說明理由.(注意:本題v的結果可保留根號).

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,拋物線y=x2+bx+c經過點(1,-4)和(-2,5),請解答下列問題:(1)求拋物線的解析式;
(2)若與x軸的兩個交點為A、B,與y軸交于點C.在該拋物線上找一點D,使得△ABC與△ABD全等,求出D點的坐標.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,已知拋物線y=-x2+bx+c與x軸交于點A、B兩點,與y軸交于點C,其中A(1,0),C(0,-3).
(1)求拋物線的解析式;
(2)求出該拋物線的對稱軸及頂點D的坐標;
(3)若點P在拋物線上運動(點P異于點D),當△PAB的面積和△DAB面積相等時,求點P的坐標.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,已知拋物線與x軸交于點A(-2,0),B(4,0),與y軸交于點C(0,8),
(1)試求拋物線的解析式;
(2)設點D是該拋物線的頂點,試求直線CD的解析式;
(3)若直線CD交x軸于點E,過點B作x軸的垂線,交直線CD于點F,將拋物線沿其對稱軸上、下平移,使拋物線與線段EF總有公共點.試探究:拋物線向上最多可平移多少個單位長度?向下最多可平移多少個單位長度?

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,把△OAB放置于平面直角坐標系xOy中,∠OAB=90°,OA=2,AB=
3
2
,把△OAB沿x軸的負方向平移2OA的長度后得到△DCE.
(1)若過原點的拋物線y=ax2+bx+c經過點B、E,求此拋物線的解析式;
(2)若點P在該拋物線上移動,當點P在第一象限內時,過點P作PQ⊥x軸于點Q,連結OP.若以O、P、Q為頂點的三角形與以B、C、E為頂點的三角形相似,直接寫出點P的坐標;
(3)若點M(-4,n)在該拋物線上,平移拋物線,記平移后點M的對應點為M′,點B的對應點為B′.當拋物線向左或向右平移時,是否存在某個位置,使四邊形M′B′CD的周長最短?若存在,求出此時拋物線的解析式;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

已知在平面直角坐標系xOy中,二次函數y=x2-bx+c(b>0)的圖象經過點A(-1,b),與y軸相交于點B,且∠ABO的余切值為3.
(1)求點B的坐標;
(2)求這個函數的解析式;
(3)如果這個函數圖象的頂點為C,求證:∠ACB=∠ABO.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

矩形ABCD的邊長AB=3,AD=2,將此矩形放在平面直角坐標系中,使AB在x軸的正半軸上,點A在點B的左側,另兩個頂點都在第一象限,且直線y=
3
2
x-1
經過這兩個頂點中的一個.
(1)求A、B、C、D四點坐標;
(2)以AB為直徑作⊙M,記過A、B兩點的拋物線y=ax2+bx+c的頂點為P.
①若P點在⊙M和矩形內,求a的取值范圍;
②過點C作CF切⊙M于E,交AD于F,當PFAB時,求拋物線的函數解析式.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,正方形ABCD的邊長為4,點P是AB上不與A、B重合的任意一點,作PQ⊥DP,Q在BC上,設AP=x,BQ=y,
(1)求y與x之間的函數關系式,并指出自變量x的取值范圍;
(2)求函數圖象的頂點坐標,并作出大致圖象.

查看答案和解析>>

同步練習冊答案