如圖,拋物線y=x2+bx+c經(jīng)過點(diǎn)(1,-4)和(-2,5),請(qǐng)解答下列問題:(1)求拋物線的解析式;
(2)若與x軸的兩個(gè)交點(diǎn)為A、B,與y軸交于點(diǎn)C.在該拋物線上找一點(diǎn)D,使得△ABC與△ABD全等,求出D點(diǎn)的坐標(biāo).
(1)由題意,得
1+b+c=-4
4-2b+c=5
,
解得,
b=-2
c=-3

所以,該拋物線的解析式為:y=x2-2x-3;

(2)∵拋物線y=x2-2x-3的對(duì)稱軸為:x=-
-2
2×1
=1,
∴根據(jù)軸對(duì)稱的性質(zhì),點(diǎn)C關(guān)于x=1的對(duì)稱點(diǎn)D即為所求,
此時(shí),AC=BD,BC=AD,
在△ABC和△BAD中,
AB=BA
AC=BD
BC=AD
,
∴△ABC≌△BAD(SSS).
在y=x2-2x-3中,令x=0,得y=-3,
則C(0,-3),
∴D(2,-3).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)拋物線y=ax2+bx+c與x軸交于兩個(gè)不同的點(diǎn)A(-l,0)、B(4,0),與y軸交于點(diǎn)C(0,2).
(1)求拋物線的解析式:
(2)問拋物線上是否存在一點(diǎn)M,使得S△ABM=2S△ABC?若存在,求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說明理由.
(3)已知點(diǎn)D(1,n)在拋物線上,過點(diǎn)A的直線y=-x-1交拋物線于另一點(diǎn)E.
①求tan∠ABD的值:
②若點(diǎn)P在x軸上,以點(diǎn)P、B、D為頂點(diǎn)的三角形與△AEB相似,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,圓M與x軸相交于A,B兩點(diǎn),其坐標(biāo)分別為A(-3,0),B(1,0),直徑CD垂直于x軸于N,直線CE切圓M于C,直線FG切圓M于F,交CE于G,已知點(diǎn)G的橫坐標(biāo)為3,
(1)若拋物線y=-x2-2x+m經(jīng)過A,B,D三點(diǎn),求m的值及點(diǎn)D的坐標(biāo);
(2)求直線DF的解析式;
(3)是否存在過點(diǎn)G的直線,使它與(1)中拋物線的兩個(gè)交點(diǎn)的橫坐標(biāo)之和等于4?若存在,請(qǐng)求出滿足條件的直線的解析式;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,矩形ABCD的頂點(diǎn)B、C在x軸上,A、D在拋物線y=ax2+bx上,且y=ax2+bx的最大值是2,y=ax2+bx與x軸的正半軸的交點(diǎn)E的坐標(biāo)是(2,0).
(1)求a,b的值;
(2)若矩形的頂點(diǎn)均為動(dòng)點(diǎn),且矩形在拋物線與x軸圍成的封閉區(qū)域內(nèi),試探索:是否存在周長(zhǎng)為3的矩形?若存在,求出此時(shí)B點(diǎn)的坐標(biāo);若不存在說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,一拋物線的對(duì)稱軸為直線x=1,與y軸負(fù)半軸交于C點(diǎn),與x軸交于A、B兩點(diǎn),其中B點(diǎn)的坐標(biāo)為(3,0),且OB=OC.
(1)求此拋物線的解析式;
(2)若點(diǎn)G(2,y)是該拋物線上一點(diǎn),點(diǎn)P是直線AG下方的拋物線上一動(dòng)點(diǎn),當(dāng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí),△APG的面積最大?求出此時(shí)P點(diǎn)的坐標(biāo)和△APG的最大面積.
(3)若平行于x軸的直線與該拋物線交于M、N兩點(diǎn)(其中點(diǎn)M在點(diǎn)N的右側(cè)),在x軸上是否存在點(diǎn)Q,使△MNQ為等腰直角三角形?若存在,請(qǐng)求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,拋物線y=ax2+bx+c的頂點(diǎn)P的坐標(biāo)為(1,-
4
3
3
),交x軸于A、B兩點(diǎn),交y軸于點(diǎn)C(0,-
3
).
(1)求拋物線的表達(dá)式.
(2)把△ABC繞AB的中點(diǎn)E旋轉(zhuǎn)180°,得到四邊形ADBC.判斷四邊形ADBC的形狀,并說明理由.
(3)試問在線段AC上是否存在一點(diǎn)F,使得△FBD的周長(zhǎng)最。咳舸嬖,請(qǐng)寫出點(diǎn)F的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,拋物線經(jīng)過A,C,D三點(diǎn),且三點(diǎn)坐標(biāo)為A(-1,0),C(0,5),D(2,5),拋物線與x軸的另一個(gè)交點(diǎn)為B點(diǎn),點(diǎn)F為y軸上一動(dòng)點(diǎn),作平行四邊形DFBG,
(1)B點(diǎn)的坐標(biāo)為______;
(2)是否存在F點(diǎn),使四邊形DFBG為矩形?如存在,求出F點(diǎn)坐標(biāo);如不存在,說明理由;
(3)連結(jié)FG,F(xiàn)G的長(zhǎng)度是否存在最小值?如存在求出最小值;若不存在說明理由;
(4)若E為AB中點(diǎn),找出拋物線上滿足到E點(diǎn)的距離小于2的所有點(diǎn)的橫坐標(biāo)x的范圍:______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,二次函數(shù)y=ax2+bx+c的圖象與x軸交于兩個(gè)不同的點(diǎn)A(-2,0)、B(4,0),與y軸交于點(diǎn)C(0,3),連接BC、AC,該二次函數(shù)圖象的對(duì)稱軸與x軸相交于點(diǎn)D.
(1)求這個(gè)二次函數(shù)的解析式、點(diǎn)D的坐標(biāo)及直線BC的函數(shù)解析式;
(2)點(diǎn)Q在線段BC上,使得以點(diǎn)Q、D、B為頂點(diǎn)的三角形與△ABC相似,求出點(diǎn)Q的坐標(biāo);
(3)在(2)的條件下,若存在點(diǎn)Q,請(qǐng)任選一個(gè)Q點(diǎn)求出△BDQ外接圓圓心的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在直角坐標(biāo)系中,點(diǎn)C(
3
,0),點(diǎn)D(0,1),CD的中垂線交CD于點(diǎn)E,交y軸于點(diǎn)B,點(diǎn)P從點(diǎn)C出發(fā)沿CO方向以每秒2
3
個(gè)單位的速度運(yùn)動(dòng),同時(shí)點(diǎn)Q從原點(diǎn)O出發(fā)沿OD方向以每秒1個(gè)單位的速度向點(diǎn)D運(yùn)動(dòng),當(dāng)點(diǎn)Q到達(dá)點(diǎn)D時(shí),點(diǎn)P,Q同時(shí)停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)的時(shí)間為秒.
(1)求出點(diǎn)B的坐標(biāo);
(2)當(dāng)t為何值時(shí),△POQ與△COD相似?
(3)當(dāng)點(diǎn)P在x軸負(fù)半軸上時(shí),記四邊形PBEQ的面積為S,求S關(guān)于t的函數(shù)關(guān)系式,并寫出自變量的取值范圍;
(4)在點(diǎn)P、Q的運(yùn)動(dòng)過程中,將△POQ繞點(diǎn)O旋轉(zhuǎn)180°,點(diǎn)P的對(duì)應(yīng)點(diǎn)P′,點(diǎn)Q的對(duì)應(yīng)點(diǎn)Q′,當(dāng)線段P′Q′與線段BE有公共點(diǎn)時(shí),拋物線y=ax2+1經(jīng)過P′Q′的中點(diǎn),此時(shí)的拋物線與x軸正半軸交于點(diǎn)M.由已知,直接寫出:①a的取值范圍為______;②點(diǎn)M移動(dòng)的平均速度是______.

查看答案和解析>>

同步練習(xí)冊(cè)答案