(2011內(nèi)蒙古赤峰,19,10分)如圖,一架滿載救援物資的飛機到達災區(qū)的上空,在A處測得空投地點C的俯角=60°,測得地面指揮臺B的俯角=30°。已知BC的距離是2000米,求此時飛機的高度(結果保留根號)
解:如圖

過A點作AD⊥BC與BC的延長線交于點D。
∵AF∥BD ,
∴∠B=∠=30°。
又∵∠= 60°,∠=30°
∴∠BAC=30°=∠B
∴AC =" BC" = 2000
在Rt△ACD中,
∠ACD=∠+∠B= 60°
∵sin 60°=
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

(8分) 現(xiàn)有一張寬為12cm練習紙,相鄰兩條格線間的距離均為0.8cm.調(diào)皮
的小聰在紙的左上角用印章印出一個矩形卡通圖案,圖案的頂點恰好在四條格線上(如
圖),測得∠α=32°.
(1)求矩形圖案的面積;
(2)若小聰在第一個圖案的右邊以同樣的方式繼續(xù)蓋印(如圖),最多能印幾個完整的圖案?(參考數(shù)據(jù):sin32°≈0.5,cos32°≈0.8,tan32°≈0.6)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖6,小明以3米/秒的速度從山腳A點爬到山頂B點,已知點B到山腳的垂直距離為24米,且山坡坡角的度數(shù)為,問小明從山腳爬上山頂需要多少時間?(結果精確到)(參考數(shù)據(jù):,

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

(11·丹東)(本題10分)數(shù)學興趣小組想利用所學的知識了解某廣告牌的高度,已知CD=2cm.經(jīng)測量,得到其它數(shù)據(jù)如圖所示.其中,AB=10cm.請你根據(jù)以上數(shù)據(jù)計算GH的長.
,要求結果精確到0.1m)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

(11·賀州)(本題滿分7分)
某校教學樓后面緊鄰著一個山坡,坡上面是一塊平地,如圖所示,BC∥AD,BE⊥AD,斜坡AB長為26米,坡角∠BAD=68°.為了減緩坡面防止山體滑坡,保障安全,學校決定對該斜坡進行改造,經(jīng)地質(zhì)人員勘測,當坡角不超過50°時,可確保山體不滑坡.
(1)求改造前坡頂?shù)降孛娴木嚯xBE的長(精確到0.1米);
(2)如果改造時保持坡腳A不動,坡頂B沿BC向左移11米到F點處,問這樣改造能確
保安全嗎?
(參考數(shù)據(jù):sin 68°≈0.93,cos 68°≈0.37,tan 68°≈2.48,sin 58°12’≈0.85,tan 49°30’
≈1.17)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖所示,漁船在A處看到燈塔C在北偏東60º方向上,漁船向正東方向航行
了12海里到達B處,在B處看到燈塔C在正北方向上,這時漁船與燈塔C的距離是【   】

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,在四邊形ABCD中,E、F分別是AB、AD的中點。若EF=2,BC=5,CD=3,則tan C等于

A.             B.          C.         D.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題


查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

已知AB和CD分別是半圓O的直徑和弦,AD和BC的夾角為a,則S△CDE: S△ABE等于(  )
A.Sin2aB.cos2aC.tan2aD. sina

查看答案和解析>>

同步練習冊答案