【題目】如圖,AC為矩形ABCD的對角線,將邊AB沿AE折疊,使點(diǎn)B落在AC上的點(diǎn)M處,將邊CD沿CF折疊,使點(diǎn)D落在AC上的點(diǎn)N處。
(1)求證:四邊形AECF是平行四邊形;
(2)若AB=6,AC=10,求四邊形AECF的面積。
【答案】(1)證明見解析;(2)30.
【解析】試題分析:(1)首先由矩形的性質(zhì)和折疊的性質(zhì)證得AB=CD,AD∥BC,∠ANF=90°,∠CME=90°,易得AN=CM,可得△ANF≌△CME(ASA),由平行四邊形的判定定理可得結(jié)論;(2)由AB=6,AC=10,可得BC=8,設(shè)CE=x,則EM=8-x,CM=10-6=4,在Rt△CEM中,利用勾股定理可解得x,由平行四邊形的面積公式可得結(jié)果.
試題解析:(1)證明:∵折疊,
∴AM=AB,CN=CD,∠FNC=∠D=90°,∠AME=∠B=90°,
∴∠ANF=90°,∠CME=90°,
∵四邊形ABCD為矩形,
∴AB=CD,AD∥BC,
∴AM=CN,
∴AM﹣MN=CN﹣MN,即AN=CM,
在△ANF和△CME中, ,
∴△ANF≌△CME(ASA),
∴AF=CE,
又∵AF∥CE,
∴四邊形AECF是平行四邊形;
(2)解:∵AB=6,AC=10,∴BC=8,
設(shè)CE=x,則EM=8﹣x,CM=10﹣6=4,
在Rt△CEM中,(8﹣x)2+42=x2, 解得:x=5,
∴四邊形AECF的面積的面積為:ECAB=5×6=30.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】-個多邊形的內(nèi)角和等于它的外角和的兩倍,則這個多邊形的邊數(shù)為( ▲ )
A. 6B. 7C. 8D. 9
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,以點(diǎn)A為圓心,AB長為半徑畫弧交AD于點(diǎn)F,再分別以點(diǎn)B、F為圓心,大于長為半徑畫弧,兩弧交于一點(diǎn)P,連接AP并延長交BC于點(diǎn)E,連接EF.
(1)四邊形ABEF是_______;(選填矩形、菱形、正方形、無法確定)(直接填寫結(jié)果)
(2)AE,BF相交于點(diǎn)O,若四邊形ABEF的周長為40,BF=10,則AE的長為________,∠ABC=________°.(直接填寫結(jié)果)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】霧霾天氣嚴(yán)重影響市民的生活質(zhì)量,在今年元旦期間,某校七年級一班的同學(xué)對“霧霾天氣的主要成因”就市民的看法做了隨機(jī)調(diào)查,并對調(diào)查結(jié)果進(jìn)行了整理,繪制了不完整的統(tǒng)計(jì)圖表(如下圖),觀察分析并回答下列問題.
(1)本次被調(diào)查的市民共有 人;
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)圖2中區(qū)域B所對應(yīng)的扇形圓心角為 度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,n+1個邊長為2的等邊三角形有一條邊在同一直線上,設(shè)△B2D1C1的面積為S1,△B3D2C2的面積為S2,…,△Bn+1DnCn的面積為Sn,則S2= ;Sn= .(用含n的式子表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=3(x﹣2)2﹣5與y軸交點(diǎn)坐標(biāo)為( 。
A. (0,2) B. (0,﹣5) C. (0,7) D. (0,3)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( 。
A. 對角線互相垂直的四邊形是菱形 B. 矩形的對角線互相垂直
C. 一組對邊平行的四邊形是平行四邊形 D. 四邊相等的四邊形是菱形
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com