【題目】如圖,平面直角坐標(biāo)系中有4個點(diǎn):A(0,2),B(﹣2,﹣2),C(﹣2,2),D(3,3).
(1)在正方形網(wǎng)格中畫出△ABC的外接圓⊙M,圓心M的坐標(biāo)是 ;
(2)若EF是⊙M的一條長為4的弦,點(diǎn)G為弦EF的中點(diǎn),求DG的最大值;
(3)點(diǎn)P在直線MB上,若⊙M上存在一點(diǎn)Q,使得P、Q兩點(diǎn)間距離小于1,直接寫出點(diǎn)P橫坐標(biāo)的取值范圍.
【答案】(1)(-1,0);(2)6;(3)﹣<x<或﹣2﹣<x<﹣2+;
【解析】
(1)畫出△ABC的外接圓即可解決問題;
(2)當(dāng)點(diǎn)G在線段DM延長線上時DG最大,此時DG=DM+GM,
(3)分兩種情形構(gòu)建方程即可即可解決問題;
(1)如圖所示;M(-1,0);
故答案為(-1,0).
(2)連接MD,MG,ME,
∵點(diǎn)G為弦EF的中點(diǎn),EM=FM=,
∴MG⊥EF,
∵EF=4,
∴EG=FG=2,
∴MG==1,
∴點(diǎn)G在以M為圓心,1為半徑的圓上,
∴當(dāng)點(diǎn)G在線段DM延長線上時DG最大,此時DG=DM+GM,
∵DM==5,
∴DG的最大值為5+1=6;
(3)設(shè)P點(diǎn)的橫坐標(biāo)為x,
當(dāng)P點(diǎn)位于線段MB及延長線上且P、Q兩點(diǎn)間距離等于1,時,,
∴或
解得|xp|=2+或2-,
∵此時P點(diǎn)在第三象限,
∴x<0,
∴x=-2-或-2+,
即當(dāng)P、Q兩點(diǎn)間距離小于1時點(diǎn)P橫坐標(biāo)的取值范圍為-2-<x<-2+;
當(dāng)P點(diǎn)位于線段BM及延長線上且P、Q兩點(diǎn)間距離等于1時,則PQ:AM=|x|:|xM|,
,
解得|x|=,
∵此時P點(diǎn)在第一或二象限,
∴x=±,
即當(dāng)P、Q兩點(diǎn)間距離小于1時點(diǎn)P橫坐標(biāo)的取值范圍為-<x;
綜上所述,點(diǎn)P橫坐標(biāo)的取值范圍為-<x或-2-<x<-2+.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形網(wǎng)格中的每個小正方形邊長都為1,每個小正方形的頂點(diǎn)叫格點(diǎn),以格點(diǎn)為頂點(diǎn)分別按下列要求畫圖:
(1)畫一條線段MN,使MN=;
(2)畫△ABC,三邊長分別為3,,.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,動點(diǎn)P在平面直角坐標(biāo)系中按圖中箭頭所示方向運(yùn)動,第1次從原點(diǎn)運(yùn)動到點(diǎn)(1,1),第2次接著運(yùn)動到點(diǎn)(2,0),第3次接著運(yùn)動到點(diǎn)(3,2),…,按這樣的運(yùn)動規(guī)律,經(jīng)過第2011次運(yùn)動后,動點(diǎn)P的坐標(biāo)是____________。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB∥CD,點(diǎn)A,E,B,C不在同一條直線上.
(1)如圖1,求證:∠E+∠C﹣∠A=180°
(2)如圖2.直線FA,CP交于點(diǎn)P,且∠BAF=∠BAE,∠DCP=∠DCE.
①試探究∠E與∠P的數(shù)量關(guān)系;
②如圖3,延長CE交PA于點(diǎn)Q,若AE∥PC,∠BAQ=α(0°<α<22.5°),則∠PQC的度數(shù)為 (用含α的式子表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠A=90°,AD⊥BC,垂足為D.給出下列四個結(jié)論:①sinα=sinB;②sinβ=sinC;③sinB=cosC;④sinα=cosβ.其中正確的結(jié)論有_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,兩個形狀、大小完全相同的含有30°,60°的三角板按如圖所示放置,PA、PB與直線MN重合,且三角板PAC和三角板PBD均可以繞點(diǎn)P逆時針旋轉(zhuǎn)。
(1)如圖2,若三角板PAC的邊PA從PN處開始繞點(diǎn)P逆時針旋轉(zhuǎn)一定角度,PF平分∠APD,PE平分∠CPD,求∠EPF的度數(shù)。
(2)如圖3,若三角板PAC的邊PA從PN處開始繞點(diǎn)P逆時針旋轉(zhuǎn),轉(zhuǎn)速為3°/s,同時三角板PBD的邊PB從PM處開始繞點(diǎn)P逆時針旋轉(zhuǎn),轉(zhuǎn)速為2°/s。在兩塊三角板旋轉(zhuǎn)過程中(PC轉(zhuǎn)到PM重合時,兩三角板都停止轉(zhuǎn)動),設(shè)兩塊三角板旋轉(zhuǎn)的時間為ts,則∠BPN= °,∠CPD= °(用含t的式子表示,并化簡);以下兩個結(jié)論:①為定值;②∠BPN+∠CPD為定值,正確的是 (填序號)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市現(xiàn)在有兩種用電收費(fèi)方法:
分時電表 | 普通電表 | |
峰時(8:00~21:00) | 谷時(21:00到次日8:00) | |
電價0.55元/千瓦·時 | 電價0.35元/千瓦·時 | 電價0.52元/千瓦·時 |
小明家所在的小區(qū)用的電表都換成了分時電表.
解決問題:
(1)小明家庭某月用電總量為千瓦·時(為常數(shù));谷時用電千瓦·時,峰時用電千瓦·時,分時計價時總價為元,普通計價時總價為元,求,與用電量的函數(shù)關(guān)系式.
(2)小明家庭使用分時電表是不是一定比普通電表合算呢?
(3)下表是路皓家最近兩個月用電的收據(jù):
谷時用電(千瓦·時) | 峰時用電(千瓦·時) |
181 | 239 |
根據(jù)上表,請問用分時電表是否合算?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解某校八年級學(xué)生參加體育鍛煉的情況,隨機(jī)調(diào)查了該校部分學(xué)生每周參加體育鍛煉的時間,并進(jìn)行了統(tǒng)計,繪制成圖1和圖2兩幅尚不完整的統(tǒng)計圖.
(1)本次共調(diào)查學(xué)生 人;
(2)這組數(shù)據(jù)的眾數(shù)是 ;
(3)請你將圖2的統(tǒng)計圖補(bǔ)充完整;
(4)若該校八年級共有650人,請根據(jù)樣本數(shù)據(jù),估計每周參加體育鍛煉時間為6小時的人數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com