如圖,△ABC中,AC=8,AB=10,△ABC的面積為30,AD平分∠BAC,F(xiàn)、E分別為AC、AD上兩動點,連接CE、EF,則CE+EF的最小值為
6
6
分析:根據(jù)題意畫出符合條件的圖形,作F關(guān)于AD的對稱點為M,作AB邊上的高CP,求出EM+EC=MC,根據(jù)垂線段最短得出EM+EC=MC≥PC,求出BE即可得出CE+EF的最小值.
解答:解:作F關(guān)于AD的對稱點為M,作AB邊上的高CP,
∵AD平分∠CAB,△ABC為銳角三角形,
∴M必在AC上,
∵F關(guān)于AD的對稱點為M,
∴ME=EF,
∴EF+EC=EM+EC,
即EM+EC=MC≥PC(垂線段最短),
∵△ABC的面積是30,AB=10,
1
2
×10×PC=30,
∴PC=6,
即CE+EF的最小值為:6.
故答案為:6.
點評:本題考查了平面展開-最短路線問題,關(guān)鍵是畫出符合條件的圖形,題目具有一定的代表性,是一道比較好的題目.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

26、已知:如圖,△ABC中,點D在AC的延長線上,CE是∠DCB的角平分線,且CE∥AB.
求證:∠A=∠B.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

27、已知:如圖,△ABC中,∠BAC=60°,D、E兩點在直線BC上,連接AD、AE.
求:∠1+∠2+∠3+∠4.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

27、如圖,△ABC中,AD⊥BC于D,DN⊥AC于N,DM⊥AB于M
求證:∠ANM=∠B.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

14、如圖,△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,則∠C的大小是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知,如圖,△ABC中,點D在BC上,且∠1=∠C,∠2=2∠3,∠BAC=70°.
(1)求∠2的度數(shù);
(2)若畫∠DAC的平分線AE交BC于點E,則AE與BC有什么位置關(guān)系,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案