在梯形ABCD中,AD∥BC,EF是中位線(xiàn).若EF=lOcm,高AH=6cm,則AD+BC=________cm,S梯形ABCD=________cm2

20    60
分析:先畫(huà)圖,根據(jù)梯形的中位線(xiàn)平行于上下兩底且等于上下兩底和的一半進(jìn)行計(jì)算,求得AD+BC,再根據(jù)S梯形ABCD=,求出面積.
解答:解:∵EF是中位線(xiàn),EF=lOcm,
∴AD+BC=10×2=20cm,
∵S梯形ABCD=,高AH=6cm,
∴S梯形ABCD=20÷2×6=60cm2
點(diǎn)評(píng):本題考查的知識(shí)比較全面,需要用到梯形中位線(xiàn)定理以及梯形面積的求法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

10、如圖,在梯形ABCD中,若AB∥CD,BD=AD,∠BCD=110°,∠CBD=30°,則∠ADC=
140°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在梯形ABCD中,AB∥CD,E是AB邊上的點(diǎn),給出下面三個(gè)論斷:①AD=BC;②DE=CE;③AE=BE.請(qǐng)你以其中的兩個(gè)論斷為條件,填入“已知”欄中,以一個(gè)論斷作為結(jié)論,填入“求證”欄中,使之成為一個(gè)正確的命題,并證明之.
已知:如圖,在梯形ABCD中,AB∥CD,E是AB邊上的點(diǎn),
AD=BC,AE=BE
AD=BC,AE=BE

求證:
DE=CE
DE=CE

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在梯形ABCD中,AD∥BC,AD=AB,過(guò)點(diǎn)A作AE∥DB交CB的延長(zhǎng)線(xiàn)于點(diǎn)E.
(1)試說(shuō)明∠ABD=∠CBD.
(2)若∠C=2∠E,試說(shuō)明AB=DC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在梯形ABCD中,AD∥BC,AB=AD,BD=BC,∠A=100°,則∠BDC的度數(shù)為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在梯形ABCD中,AD∥BC,AB=
8
cm,AD=3cm,DC=
5
cm,∠B=45°,點(diǎn)P是下底BC邊上的一個(gè)動(dòng)點(diǎn),從B向C以2cm/s的速度運(yùn)動(dòng),到達(dá)點(diǎn)C時(shí)停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)的時(shí)間為t(s).
(1)求BC的長(zhǎng);
(2)當(dāng)t為何值時(shí),四邊形APCD是等腰梯形;
(3)當(dāng)t為何值時(shí),以A、B、P為頂點(diǎn)的三角形是等腰三角形.

查看答案和解析>>

同步練習(xí)冊(cè)答案