分析 (1)由CA=CB,CD=CE,∠ACB=∠DCE=α,利用SAS即可判定△ACD≌△BCE;
(2)根據(jù)△ACD≌△BCE,得出∠CAD=∠CBE,再根據(jù)∠AFC=∠BFH,即可得到∠AMB=∠ACB=α;
(3)先根據(jù)SAS判定△ACP≌△BCQ,再根據(jù)全等三角形的性質(zhì),得出CP=CQ,∠ACP=∠BCQ,最后根據(jù)∠ACB=90°即可得到∠PCQ=90°,進(jìn)而得到△PCQ為等腰直角三角形.
解答 解:(1)如圖1,∵∠ACB=∠DCE=α,
∴∠ACD=∠BCE,
在△ACD和△BCE中,
$\left\{\begin{array}{l}{CA=CB\\;}\\{∠ACD=∠BCE}\\{CD=CE}\end{array}\right.$,
∴△ACD≌△BCE(SAS),
∴BE=AD;
(2)如圖1,∵△ACD≌△BCE,
∴∠CAD=∠CBE,
∵△ABC中,∠BAC+∠ABC=180°-α,
∴∠BAM+∠ABM=180°-α,
∴△ABM中,∠AMB=180°-(180°-α)=α;
(3)△CPQ為等腰直角三角形.
證明:如圖2,由(1)可得,BE=AD,
∵AD,BE的中點(diǎn)分別為點(diǎn)P、Q,
∴AP=BQ,
∵△ACD≌△BCE,
∴∠CAP=∠CBQ,
在△ACP和△BCQ中,
$\left\{\begin{array}{l}{CA=CB}\\{∠CAP=∠CBQ}\\{AP=BQ}\end{array}\right.$,
∴△ACP≌△BCQ(SAS),
∴CP=CQ,且∠ACP=∠BCQ,
又∵∠ACP+∠PCB=90°,
∴∠BCQ+∠PCB=90°,
∴∠PCQ=90°,
∴△CPQ為等腰直角三角形.
點(diǎn)評(píng) 本題屬于三角形綜合題,主要考查了全等三角形的判定與性質(zhì),等腰直角三角形的判定以及三角形內(nèi)角和定理的綜合應(yīng)用.等腰直角三角形是一種特殊的三角形,具有所有三角形的性質(zhì),還具備等腰三角形和直角三角形的所有性質(zhì).解題時(shí)注意掌握全等三角形的對(duì)應(yīng)邊相等,對(duì)應(yīng)角相等的運(yùn)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 在圓上 | B. | 在圓外 | C. | 在圓內(nèi) | D. | 不確定 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 4cm | B. | 8cm | C. | 2$\sqrt{3}$cm | D. | 4$\sqrt{3}$cm |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 各邊相等,各角也相等的多邊形是正多邊形 | |
B. | 單項(xiàng)式-2xy的系數(shù)是-2 | |
C. | 數(shù)軸是一條特殊的直線 | |
D. | 多項(xiàng)式ab2-3a2+1次數(shù)是5次 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com