【題目】某廠家接到一批特殊產(chǎn)品的生產(chǎn)訂單,客戶要求在兩周內(nèi)完成生產(chǎn),并商定這批產(chǎn)品的出廠價為每個16元.受市場影響,制造這批產(chǎn)品的某種原材料成本價持續(xù)上漲,設(shè)第x(1≤x≤14,且x為整數(shù))每個產(chǎn)品的成本為m元,mx之間的函數(shù)關(guān)系為m=x+8.訂單完成后,經(jīng)統(tǒng)計發(fā)現(xiàn)工人王師傅第x天生產(chǎn)的產(chǎn)品個數(shù)yx滿足如圖所示的函數(shù)關(guān)系:

1)寫出yx之間的函數(shù)關(guān)系式及自變量x的取值范圍;

2)設(shè)王師傅第x天創(chuàng)造的產(chǎn)品利潤為W元,問王師傅第幾天創(chuàng)造的利潤最大?最大利潤是多少元?

【答案】(1)x為正整數(shù);(2)王師傅第天創(chuàng)造的利潤最大,最大利潤是

【解析】

1)首先觀察題中的函數(shù)圖像可知其為一個分段函數(shù),由此分別表示出時與時兩個范圍內(nèi)的函數(shù)關(guān)系式,并且其中x為正整數(shù),由此進一步即可得出答案;

2)根據(jù)題意分當(dāng)x為正整數(shù)時或當(dāng)x為正整數(shù)時兩種情況進一步分析比較即可.

1)由題意可得,,

∴當(dāng)x為正整數(shù)時,yx之間的函數(shù)關(guān)系式為:

當(dāng)x為正整數(shù)時,yx之間的函數(shù)關(guān)系式為:,

綜上所述,yx之間的函數(shù)關(guān)系式為:x為正整數(shù);

(2)①當(dāng)x為正整數(shù)時,

,

,

∴當(dāng)時,

②當(dāng)時,且為正整數(shù)時,

,

,

的增大而減小,

∴當(dāng)時,

∴王師傅第天創(chuàng)造的利潤最大,最大利潤是元,

答:王師傅第天創(chuàng)造的利潤最大,最大利潤是元.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著新冠肺炎的爆發(fā),市場對口罩的需求量急劇增大.某口罩生產(chǎn)商自二月份以來,--直積極恢復(fù)產(chǎn)能,每日口罩生產(chǎn)量(百萬個)與天數(shù)為整數(shù))的函數(shù)關(guān)系圖象如圖所示,而該生產(chǎn)商對口供應(yīng)市場對口罩的需求量<(百萬個)與天數(shù)呈拋物線型,第天市場口罩缺口(需求量與供應(yīng)量差)就達到(百萬個),之后若干天,市場口罩需求量不斷上升,在第天需求量達到最高峰(百萬個)

求出的函數(shù)解析式;

當(dāng)市場供應(yīng)量不小于需求量時,市民買口罩才無需提前預(yù)約,那么在整個二月份,市民無需預(yù)約即可購買口罩的天數(shù)共有多少天?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,RtACB中,∠ACB=90°AC=2BC=4,點PAB邊中點,點EAC邊上不與端點重合的一動點,將△ADP沿著直線PD折疊得△PDE,若DEAB,則AD的長度為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線yax2+bx+c經(jīng)過點(1,0),與y軸交于(0,2),拋物線的對稱軸為直線x1,則下列結(jié)論中:①a+cb;②方程ax2+bx+c0的解為﹣13;③2a+b0;④ca2,其中正確的結(jié)論有(

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,經(jīng)過點B(1,0)的拋物線y軸交于點C,其頂點為點G,過點Cy軸的垂線交拋物線對稱軸于點D,線段CO上有一動點M,連接DM、DG

1)求拋物線的表達式;

2)求的最小值以及相應(yīng)的點M的坐標;

3)如圖2,在(2)的條件下,以點A(2,0)為圓心,以AM長為半徑作圓交x軸正半軸于點E.在y軸正半軸上有一動點P,直線PF與⊙A相切于點F,連接EFy軸于點N,當(dāng)PFBM時,求PN的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列方程中,沒有實數(shù)根的是( 。

A.2x+30B.x210C.D.x2+x+10

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB4C為射線BA上一動點,以BC為邊向上作正三角形BCD,⊙OA、CD三點,E為⊙O上一點,滿足ADED,直線CE交直線ADF

1)求證:CEBD

2)設(shè)CF=a,若C在線段AB上運動.

①求點E運動的路徑長;

②求a的范圍;

3)若AC1,求 tanDEC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線軸于兩點,交軸于點,連接

1)求拋物線的解析式;

2)點是拋物線上一點,設(shè)點的橫坐標為

①當(dāng)點在第一象限時,過點軸,交于點,過點軸,垂足為,連接,當(dāng)相似時,求點的坐標;

②請直接寫出使的點的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為了解七、八年級學(xué)生對防溺水安全知識的掌握情況,從七、八年級各隨機抽取50名學(xué)生進行測試,并對成績(百分制)進行整理、描述和分析.部分信息如下:

a.七年級成績頻數(shù)分布直方圖:

b.七年級成績在這一組的是:70 72 74 75 76 76 77 77 77 78 79

c.七、八年級成績的平均數(shù)、中位數(shù)如下:

年級

平均數(shù)

中位數(shù)

76.9

m

79.2

79.5

根據(jù)以上信息,回答下列問題:

1)在這次測試中,七年級在80分以上(含80分)的有   人;

2)表中m的值為   ;

3)在這次測試中,七年級學(xué)生甲與八年級學(xué)生乙的成績都是78分,請判斷兩位學(xué)生在各自年級的排名誰更靠前,并說明理由;

4)該校七年級學(xué)生有400人,假設(shè)全部參加此次測試,請估計七年級成績超過平均數(shù)76.9分的人數(shù).

查看答案和解析>>

同步練習(xí)冊答案