(2006•南通)如圖,已知AB是⊙O的直徑,⊙O的切線PA與弦BC的延長線相交于點P,∠PBA的平分線交PA于點D,∠ABC=30°.
(1)求∠ADB的度數(shù);
(2)若PA=2cm,求BC的長.

【答案】分析:(1)根據(jù)切線的性質(zhì)知:∠PAB=90°,再根據(jù)∠PBA的平分線交PA于點D,∠ABC的度數(shù),可得:∠ABD的度數(shù),從而可將∠ADB的度數(shù)求出;
(2)在Rt△APC中,根據(jù)PA的長和∠PAC的度數(shù),可將PA的長求出,在Rt△ABP中,根據(jù)三角函數(shù)可將PB的長求出,從而可將BC的長求出.
解答:解:(1)∵PA是⊙O的切線,AB是⊙O的直徑,
∴∠PAB=90°,
∵BD平分∠PBA,
∴∠ABD=∠PBA=×30°=15°,
∴∠ADB=90°-∠ABD=75°;

(2)∵AB是⊙O的直徑,
∴∠PCA=∠ACB=90°;
在Rt△ABC中,∠ABC=30°,
∴∠BAC=60°,
∴∠PAC=∠PAB-∠BAC=30°;
在Rt△PAC中,
∵PA=2,∠PCA=90°,
∴PC=PA=1;
在Rt△ABP中,
∵∠ABP=30°,∠PAB=90°,
∴PB=2AP=2×2=4,
∴BC=PB-PC=3(cm).
點評:本題考查了圓的切線性質(zhì),及解直角三角形的知識.運用切線的性質(zhì)來進行計算或論證,常通作輔助線連接圓心和切點,利用垂直構(gòu)造直角三角形解決有關(guān)問題.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:2006年全國中考數(shù)學試題匯編《一次函數(shù)》(07)(解析版) 題型:解答題

(2006•南通)如圖,在平面直角坐標系中,O為坐標原點,B(5,0),M為等腰梯形OBCD底邊OB上一點,OD=BC=2,∠DMC=∠DOB=60度.
(1)求點D,B所在直線的函數(shù)表達式;
(2)求點M的坐標;
(3)∠DMC繞點M順時針旋轉(zhuǎn)α(0°<α<30°后,得到∠D1MC1(點D1,C1依次與點D,C對應),射線MD1交邊DC于點E,射線MC1交邊CB于點F,設(shè)DE=m,BF=n.求m與n的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學 來源:2009年北京市順義區(qū)中考數(shù)學一模試卷(解析版) 題型:解答題

(2006•南通)如圖,在平面直角坐標系中,O為坐標原點,B(5,0),M為等腰梯形OBCD底邊OB上一點,OD=BC=2,∠DMC=∠DOB=60度.
(1)求點D,B所在直線的函數(shù)表達式;
(2)求點M的坐標;
(3)∠DMC繞點M順時針旋轉(zhuǎn)α(0°<α<30°后,得到∠D1MC1(點D1,C1依次與點D,C對應),射線MD1交邊DC于點E,射線MC1交邊CB于點F,設(shè)DE=m,BF=n.求m與n的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學 來源:2006年江蘇省南通市中考數(shù)學試卷(課標卷)(解析版) 題型:解答題

(2006•南通)如圖,在平面直角坐標系中,O為坐標原點,B(5,0),M為等腰梯形OBCD底邊OB上一點,OD=BC=2,∠DMC=∠DOB=60度.
(1)求點D,B所在直線的函數(shù)表達式;
(2)求點M的坐標;
(3)∠DMC繞點M順時針旋轉(zhuǎn)α(0°<α<30°后,得到∠D1MC1(點D1,C1依次與點D,C對應),射線MD1交邊DC于點E,射線MC1交邊CB于點F,設(shè)DE=m,BF=n.求m與n的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學 來源:2006年江蘇省南通市中考數(shù)學試卷(大綱卷)(解析版) 題型:解答題

(2006•南通)如圖,在平面直角坐標系中,O為坐標原點,B(5,0),M為等腰梯形OBCD底邊OB上一點,OD=BC=2,∠DMC=∠DOB=60度.
(1)求點D,B所在直線的函數(shù)表達式;
(2)求點M的坐標;
(3)∠DMC繞點M順時針旋轉(zhuǎn)α(0°<α<30°后,得到∠D1MC1(點D1,C1依次與點D,C對應),射線MD1交邊DC于點E,射線MC1交邊CB于點F,設(shè)DE=m,BF=n.求m與n的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學 來源:2006年江蘇省南通市中考數(shù)學試卷(大綱卷)(解析版) 題型:填空題

(2006•南通)如圖,直線y=kx(k>0)與雙曲線y=交于A(x1,y1),B(x2,y2)兩點,則2x1y2-7x2y1的值等于   

查看答案和解析>>

同步練習冊答案