【題目】如圖,PA為⊙O的切線,PB與⊙O交于B、C兩點(diǎn),已知PA=6,PB=3,則PC=_____.
【答案】12
【解析】
連接AO并延長交⊙O于E,連接BE,AB,由切線的性質(zhì)得到∠EAP=90°,根據(jù)圓周角定理得到∠ABE=90°,根據(jù)余角的性質(zhì)和圓周角定理得到∠C=∠PAB,根據(jù)相似三角形的性質(zhì)即可得到結(jié)論.
解:連接AO并延長交⊙O于E,連接BE,AB,
∵PA為⊙O的切線,
∴∠EAP=90°,
∴∠EAB+∠PAB=90°,
∵AE是⊙O的直徑,
∴∠ABE=90°,
∴∠E+∠EAB=90°,
∴∠E=∠BAP,
∵∠E=∠C,
∴∠C=∠PAB,
∵∠P=∠P,
∴△APB∽△CPA,
∴,
∴=,
∴PC=12,
故答案為:12.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】四張撲克牌的牌面如圖1,將撲克牌洗勻后,如圖2背面朝上放置在桌面上,小明和小亮設(shè)計(jì)了A、B兩種游戲方案:
方案A:隨機(jī)抽一張撲克牌,牌面數(shù)字為5時(shí)小明獲勝;否則小亮獲勝.
方案B:隨機(jī)同時(shí)抽取兩張撲克牌,兩張牌面數(shù)字之和為偶數(shù)時(shí),小明獲勝;否則小亮獲勝.
請(qǐng)你幫小亮選擇其中一種方案,使他獲勝的可能性較大,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場(chǎng)一種商品的進(jìn)價(jià)為每件元,售價(jià)為每件元.每天可以銷售件,為盡快減少庫存,商場(chǎng)決定降價(jià)促銷.
(1)若該商品連續(xù)兩次下調(diào)相同的百分率后售價(jià)降至每件元,求兩次下降的百分率;
(2)經(jīng)調(diào)查,若該商品每降價(jià)元,每天可多銷售件,那么每天要想獲得最大利潤,每件售價(jià)應(yīng)多少元?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平行四邊形ABCD的頂點(diǎn)C在y軸正半軸上,CD平行于x軸,直線AC交x軸于點(diǎn)E,BC⊥AC,連接BE,反比例函數(shù)y=(x>0)的圖象經(jīng)過點(diǎn)D,已知S△BCE=2,則k的值是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將邊長為13的菱形ABCD沿AD方向平移至DCEF的位置,作EG⊥AB,垂足為點(diǎn)G,GD的延長線交EF于點(diǎn)H,已知BD=24,則GH=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:在線段MN上存在點(diǎn)P、Q將線段MN分為相等的三部分,則稱P、Q為線段MN的三等分點(diǎn).
已知一次函數(shù)y=﹣x+3的圖象與x、y軸分別交于點(diǎn)M、N,且A、C為線段MN的三等分點(diǎn)(點(diǎn)A在點(diǎn)C的左邊).
(1)直接寫出點(diǎn)A、C的坐標(biāo);
(2)①二次函數(shù)的圖象恰好經(jīng)過點(diǎn)O、A、C,試求此二次函數(shù)的解析式;
②過點(diǎn)A、C分別作AB、CD垂直x軸于B、D兩點(diǎn),在此拋物線O、C之間取一點(diǎn)P(點(diǎn)P不與O、C重合)作PF⊥x軸于點(diǎn)F,PF交OC于點(diǎn)E,是否存在點(diǎn)P使得AP=BE?若存在,求出點(diǎn)P的坐標(biāo)?若不存在,試說明理由;
(3)在(2)的條件下,將△OAB沿AC方向移動(dòng)到△O'A'B'(點(diǎn)A'在線段AC上,且不與C重合),△O'A'B'與△OCD重疊部分的面積為S,試求當(dāng)S=時(shí)點(diǎn)A'的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校九(1)、九(2)兩班的班長交流了為四川安雅地震災(zāi)區(qū)捐款的情況:
(Ⅰ)九(1)班班長說:“我們班捐款總數(shù)為1200元,我們班人數(shù)比你們班多8人.”
(Ⅱ)九(2)班班長說:“我們班捐款總數(shù)也為1200元,我們班人均捐款比你們班人均捐款多20%.”
請(qǐng)根據(jù)兩個(gè)班長的對(duì)話,求這兩個(gè)班級(jí)每班的人均捐款數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】探究:
(1)如圖1,在正方形ABCD中,E、F分別是BC、CD上的點(diǎn),且∠EAF=,請(qǐng)直接寫出BE、DF與EF之間的數(shù)量關(guān)系;
(2)如圖2,若把(1)問中的條件變?yōu)?/span>“四邊形ABCD中,AB=AD,∠B+∠D=,E、F分別是邊BC、CD上的點(diǎn),且,則(1)中的結(jié)論是否仍然成立,若成立,請(qǐng)證明,若不成立,請(qǐng)說明理由;
(3)在(2)問中,若將△AEF繞點(diǎn)A逆時(shí)針旋轉(zhuǎn),當(dāng)點(diǎn)E、F分別運(yùn)動(dòng)到BC、CD延長線上時(shí),如圖3所示,其它條件不變,則(1)問中的結(jié)論是否發(fā)生變化?若變化,請(qǐng)寫出結(jié)論并證明,若不變,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形OABC為矩形,以點(diǎn)O為原點(diǎn)建立直角坐標(biāo)系,點(diǎn)C在軸的正半軸上,點(diǎn)A在軸的正半軸上,已知點(diǎn)B的坐標(biāo)為(2,4),反比例函數(shù)的圖像經(jīng)過AB的中點(diǎn)D,且與BC交于點(diǎn)E.
(1)求的值和點(diǎn)E的坐標(biāo);
(2)求直線DE的解析式;
(3)點(diǎn)Q為軸上一點(diǎn),點(diǎn)P為反比例函數(shù)圖像上一點(diǎn),是否存在點(diǎn)P、Q,使得以P、Q、D、E為頂點(diǎn)的四邊形為平行四邊形, 如果存在,請(qǐng)求出點(diǎn)P的坐標(biāo); 如果不存在,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com