(2012•陜西)如圖,在半徑為5的⊙O中,AB、CD是互相垂直的兩條弦,垂足為P,且AB=CD=8,則OP的長為( 。
分析:作OM⊥AB于M,ON⊥CD于N,連接OB,OD,首先利用勾股定理求得OM的長,然后判定四邊形OMPN是正方形,求得正方形的對角線的長即可求得OM的長.
解答:解:作OM⊥AB于M,ON⊥CD于N,連接OB,OD,
由垂徑定理、勾股定理得:OM=ON=
52-42
=3,
∵弦AB、CD互相垂直,
∴∠DPB=90°,
∵OM⊥AB于M,ON⊥CD于N,
∴∠OMP=∠ONP=90°
∴四邊形MONP是矩形,
∵OM=ON,
∴四邊形MONP是正方形,
∴OP=3
2

故選C.
點評:本題考查了垂徑定理及勾股定理的知識,解題的關(guān)鍵是正確地作出輔助線.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

(2012•陜西)如圖,正三角形ABC的邊長為3+
3

(1)如圖①,正方形EFPN的頂點E、F在邊AB上,頂點N在邊AC上,在正三角形ABC及其內(nèi)部,以點A為位似中心,作正方形EFPN的位似正方形E′F′P′N′,且使正方形E′F′P′N′的面積最大(不要求寫作法);
(2)求(1)中作出的正方形E′F′P′N′的邊長;
(3)如圖②,在正三角形ABC中放入正方形DEMN和正方形EFPH,使得DE、EF在邊AB上,點P、N分別在邊CB、CA上,求這兩個正方形面積和的最大值和最小值,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•陜西)如圖,小明想用所學的知識來測量湖心島上的迎賓槐與湖岸上涼亭間的距離,他先在湖岸上的涼亭A處測得湖心島上的迎賓槐C處位于北偏東65°方向,然后,他從涼亭A處沿湖岸向東方向走了100米到B處,測得湖心島上的迎賓槐C處位于北偏東45°方向(點A、B、C在同一平面上),請你利用小明測得的相關(guān)數(shù)據(jù),求湖心島上的迎賓槐C處與湖岸上的涼亭A處之間的距離(結(jié)果精確到1米).(參考數(shù)據(jù)sin25°≈0.4226,cos25°≈0.9063,tan25°≈0.4663,sin65°≈0.5563,cos65°≈0.4226,tan65°≈2.1445)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•陜西)如圖,在?ABCD中,∠ABC的平分線BF分別與AC、AD交于點E、F.
(1)求證:AB=AF;
(2)當AB=3,BC=5時,求
AEAC
的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•陜西)如圖,從點A(0,2)發(fā)出一束光,經(jīng)x軸反射,過點B(4,3),則這束光從點A到點B所經(jīng)過的路徑的長為
41
41

查看答案和解析>>

同步練習冊答案