如圖,在正方形ABCD中,P是對(duì)角線AC上的一點(diǎn),連接BP、DP,延長(zhǎng)BC到E,使PB=PE.求證:∠PDC=∠PEC.
【考點(diǎn)】全等三角形的判定與性質(zhì);正方形的性質(zhì).
【分析】根據(jù)正方形的四條邊都相等可得BC=CD,對(duì)角線平分一組對(duì)角可得∠BCP=∠DCP,再利用“邊角邊”證明△BCP和△DCP全等,根據(jù)全等三角形對(duì)應(yīng)角相等可得∠PDC=∠PBC,再根據(jù)等邊對(duì)等角可得∠PBC=∠PEC,從而得證.
【解答】證明:在正方形ABCD中,BC=CD,∠BCP=∠DCP,
在△BCP和△DCP中,
,
∴△BCP≌△DCP(SAS),
∴∠PDC=∠PBC,
∵PB=PE,
∴∠PBC=∠PEC,
∴∠PDC=∠PEC.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,在平面直角坐標(biāo)系中,已知△ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別為A(﹣5,1),B(﹣2,2),C(﹣1,4),請(qǐng)按下列要求畫圖:
(1)將△ABC先向右平移4個(gè)單位長(zhǎng)度、再向下平移1個(gè)單位長(zhǎng)度,得到△A1B1C1,畫出△A1B1C1;
(2)△A2B2C2與△ABC關(guān)于原點(diǎn)O成中心對(duì)稱,畫出△A2B2C2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
已知點(diǎn)A(1,2)在反比例函數(shù)y=的圖象上,則該反比例函數(shù)的解析式是( 。
A.y= B.y= C.y= D.y=2x
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
.如圖,在△ABC中,D,E,F(xiàn),分別是AB,BC,AC的中點(diǎn),求證:四邊形BEFD是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,在直角坐標(biāo)系中,A(0,4),B(﹣3,0).
(1)①畫出線段AB關(guān)于y軸對(duì)稱線段AC;
②將線段CA繞點(diǎn)C順時(shí)針旋轉(zhuǎn)一個(gè)角,得到對(duì)應(yīng)線段CD,使得AD∥x軸,請(qǐng)畫出線段CD;
(2)判斷四邊形ABCD的形狀: .
(3)若直線y=kx平分(1)中四邊形ABCD的面積,請(qǐng)直接寫出實(shí)數(shù)k的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com