平面直角坐標(biāo)系中有一張矩形紙片OABC,O為坐標(biāo)原點,A點坐標(biāo)為(10,0),C點坐標(biāo)為(0,6),D是BC邊上的動點(與點B、C不重合).如圖②,將△COD沿OD翻折,得到△FOD;再在AB邊上選取適當(dāng)?shù)狞cE,將△BDE沿DE翻折,得到△GDE,并使直線DG,DF重合.

(1)圖①中,若△COD翻折后點F落在OA邊上,求直線DE的解析式.

(2)設(shè)(1)中所求直線DE與x軸交于點M,請你猜想過點M、C且關(guān)于y軸對稱的拋物線與直線DE的公共點的個數(shù),在圖①的圖形中,通過計算驗證你的猜想.

(3)圖②中,設(shè)E(10,b),求b的最小值.

答案:
解析:

    (1)據(jù)題意可知:D(6,6),E(10,2)  1分

  設(shè)直線DE的解析式y(tǒng)=kx+b

  則 ∴

  ∴直線DE的解析式:y=-x+12  2分

  (2)直線DE的解析式:y=-x+12

  令y=0,得x=12,∴M(12,0)

  設(shè)過點M(12,0)、C(0,6)且關(guān)于y軸對稱的拋物線為:y=ax2+c

  可求  3分

  猜想:直線DE∶y=-x+12與拋物線:只有一個公共點

  證明:直線DE∶y=-x+12代入拋物線:,得:

  

  化簡得:x2-24x+144=0

  ∴

  ∴直線DE:y=-x+12與拋物線:只有一個公共點  4分

  (3)設(shè)E(10,b),D(m,6)據(jù)題意可知:

  ∠OCD=∠DBE=90°,∠CDO=∠FDO,∠BDE=∠GDE

  ∵∠CDO+∠FDO+∠BDE+∠GDE=180° ∴∠CDO+∠BDE=90°

  ∵∠COD+∠CDO=90° ∴∠COD=∠BDE

  ∴△COD∽△BDE  6分

  ∴

  據(jù)題意,可知:BE=6-b,BD=10-m,

  

  

    7分


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

平面直角坐標(biāo)系中有一張矩形紙片OABC,O為坐標(biāo)原點,A點坐標(biāo)為(10,0),C點坐標(biāo)為(0,6),D是BC邊上的動點(與點B、C不重合).如圖②,將△COD沿OD翻折,得到△FOD;再在AB邊上選取適當(dāng)?shù)狞cE,將△BDE沿DE翻折,得到△GDE,并使直線DG,DF重合.
(1)圖①中,若△COD翻折后點F落在OA邊上,求直線DE的解析式;
(2)設(shè)(1)中所求直線DE與x軸交于點M,請你猜想過點M、C且關(guān)于y軸對稱的拋物線與直線DE的公共點的個數(shù),在圖①的圖形中,通過計算驗證你的猜想;
(3)圖②中,設(shè)E(10,b),求b的最小值.精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,平面直角坐標(biāo)系中有一矩形紙片OABC,O為原點,點A,C分別在x軸,y軸上,點B坐標(biāo)為(m,
2
)(其中m>0),在BC邊上選取適當(dāng)?shù)狞cE和點F,將△OCE沿OE翻折,得到△OGE;再將△ABF沿AF翻折,恰好使點B與點G重合,得到△AGF,且∠OGA=90度.
精英家教網(wǎng)(1)求m的值;
(2)求過點O,G,A的拋物線的解析式和對稱軸;
(3)在拋物線的對稱軸上是否存在點P,使得△OPG是等腰三角形?若不存在,請說明理由;若存在,直接答出所有滿足條件的點P的坐標(biāo)(不要求寫出求解過程).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,平面直角坐標(biāo)系中有一直角梯形OMNH,點H的坐標(biāo)為(-8,0),點N的坐標(biāo)為(-6,-4).
(1)畫出直角梯形OMNH繞點O旋轉(zhuǎn)180°的圖形OABC,并寫出頂點A,B,C的坐標(biāo)(點M的對應(yīng)點為A,點N的對應(yīng)點為B,點H的對應(yīng)點為C);
(2)求出過A,B,C三點的拋物線的表達(dá)式;
(3)試設(shè)計一種平移使(2)中的拋物線經(jīng)過四邊形ABCO的對角線交點;
(4)截取CE=OF=AG=m,且E,F(xiàn),G分別在線段CO,OA,AB上,四邊精英家教網(wǎng)形BEFG是否存在鄰邊相等的情況?若存在,請直接寫出此時m的值,并指出相等的鄰邊;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,平面直角坐標(biāo)系中有一矩形ABCO(O為原點),點A、C分別在x軸、y軸上,且C點坐標(biāo)為(0,6);將BCD沿BD折疊(D點在OC邊上),使C點落在OA邊的E點上,并將BAE沿BE折疊,恰好使點A落在BD的點F上.
(1)直接寫出∠ABE、∠CBD的度數(shù),并求折痕BD所在直線的函數(shù)解析式;
(2)過F點作FG⊥x軸,垂足為G,F(xiàn)G的中點為H,若拋物線y=ax2+bx+c經(jīng)過B、H、D三點,求拋物線的函數(shù)解析式;
(3)若點P是矩形內(nèi)部的點,且點P在(2)中的拋物線上運動(不含B、D點),過點P作PN⊥BC分別交BC和BD于點N、M,設(shè)h=PM-MN,試求出h與P點橫坐標(biāo)x的函數(shù)解析式,并畫出該函數(shù)的簡圖,分別寫出使PM<NM、PM=MN、PM>MN成立的x的取值范圍.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)系中有一條“魚”.它有6個頂點,則下列說法正確的是( 。

查看答案和解析>>

同步練習(xí)冊答案