【題目】如圖,有一段15m長的舊圍墻AB,現(xiàn)打算利用該圍墻的一部分(或全部)為一邊,再用32m長的籬笆圍成一塊長方形場地CDEF.

(1)怎樣圍成一個面積為126m2的長方形場地?

(2)長方形場地面積能達到130m2嗎?如果能,請給出設(shè)計方案,如果不能,請說明理由.

【答案】(1)能圍成一個長14m,寬9m的長方形場地;(2)長方形場地面積不能達到130m2

【解析】

(1)表示出長方形的長和寬即可解題,

(2)令方程等于130,求解方程即可.

解:(1)設(shè)CD=xm,則DE=(32﹣2x)m,

依題意得:x(32﹣2x)=126,

整理得x2﹣16x+63=0,

解得x1=9,x2=7,

當(dāng)x1=9時,(32﹣2x)=14

當(dāng)x2=7,(32﹣2x)=18>15(不合題意舍去)

能圍成一個長14m,寬9m的長方形場地.

(2)設(shè)CD=ym,則DE=(32﹣2y)m,

依題意得y(32﹣2y)=130

整理得y2﹣16y+65=0

△=(﹣16)2﹣4×1×65=﹣4<0

故方程沒有實數(shù)根,

長方形場地面積不能達到130m2

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】平面直角坐標(biāo)系中,點P的坐標(biāo)為(m,n),則向量可以用點P的坐標(biāo)表示為=(m,n);已知=(x1,y1),=(x2,y2),若x1x2+y1y2=0,則互相垂直.

下面四組向量:①=(3,﹣9),=(1,﹣);

=(2,π0),=(21,﹣1);

=(cos30°,tan45°),=(sin30°,tan45°);

=(+2,),=(﹣2,).

其中互相垂直的組有( 。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算:在一次數(shù)學(xué)社團活動課上,同學(xué)們測量一座古塔CD的高度,他們首先在A處安置測量器,測得塔頂C的仰角∠CFE30°,然后往塔的方向前進100米到達B處,此時測得塔頂C的仰角∠CGE60°,已知測量器高1.5米,請你根據(jù)以上數(shù)據(jù)計算出古塔CD的高度.(保留根號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=x2+bx+c的圖象經(jīng)過點(4,3),(3,0).

(1)求b、c的值;

(2)求出該二次函數(shù)圖象的頂點坐標(biāo)和對稱軸,并在所給坐標(biāo)系中畫出該函數(shù)的圖象;

(3)該函數(shù)的圖象經(jīng)過怎樣的平移得到y=x2的圖象

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠B=90°,AB=12,BC=24,動點P從點A開始沿邊AB向終點B以每秒2個單位長度的速度移動,動點Q從點B開始沿邊BC以每秒4個單位長度的速度向終點C移動,如果點P、Q分別從點A、B同時出發(fā),那么△PBQ的面積S隨出發(fā)時間t(s)如何變化?寫出函數(shù)關(guān)系式及t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,AB=15AC=12,BC=9,經(jīng)過點C且與邊AB相切的動圓與CB、CA分別相交于點EF,則線段EF長度的最小值是__

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,四邊形ABCD是正方形,點E是邊BC上一點,點F在射線CM上,∠AEF=90°,AE=EF,過點F作射線BC的垂線,垂足為H,連接AC.

(1)試判斷BE與FH的數(shù)量關(guān)系,并說明理由;

(2)求證:∠ACF=90°;

(3)連接AF,過A、E、F三點作圓,如圖2,若EC=4,∠CEF=15°,求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線y=x+3與拋物線交于A、B兩點,點Ax軸上,點B的橫坐標(biāo)為.動點P在拋物線上運動(不與點AB重合),過點Py軸的平行線,交直線AB于點Q.當(dāng)PQ不與y軸重合時,以PQ為邊作正方形PQMN,使MNy軸在PQ的同側(cè),連結(jié)PM.設(shè)點P的橫坐標(biāo)為m

1)求bc的值.

2)當(dāng)點N落在直線AB上時,直接寫出m的取值范圍.

3)當(dāng)點PAB兩點之間的拋物線上運動時,設(shè)正方形PQMN的周長為C,求Cm之間的函數(shù)關(guān)系式,并寫出Cm增大而增大時m的取值范圍.

4)當(dāng)PQM與坐標(biāo)軸有2個公共點時,直接寫出m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解方程:

我們已經(jīng)學(xué)習(xí)了一元二次方程的多種解法:如因式分解法,開平方法,配方法和公式法,還可以運用十字相乘法,請從以下一元二次方程中任選兩個,并選擇你認(rèn)為適當(dāng)?shù)姆椒ń膺@個方程.

我選擇第 個方程。

查看答案和解析>>

同步練習(xí)冊答案