【題目】如圖,BD丄AC 于D,EF丄AC 于F.∠AMD=∠AGF.∠1=∠2=35°
(1)求∠GFC的度數(shù):
(2)求證:DM∥BC.
【答案】
(1)解:∵BD⊥AC,EF⊥AC,
∴BD∥EF,
∴∠EFG=∠1=35°,
∴∠GFC=90°+35°=125°
(2)證明:∵BD∥EF,
∴∠2=∠CBD,
∴∠1=∠CBD,
∴GF∥BC,
∵∠AMD=∠AGF,
∴MD∥GF,
∴DM∥BC
【解析】(1)由BD⊥AC,EF⊥AC,得到BD∥EF,根據(jù)平行線的性質(zhì)得到∠EFG=∠1=35°,再根據(jù)角的和差關(guān)系可求∠GFC的度數(shù);(2)根據(jù)平行線的性質(zhì)得到∠2=∠CBD,等量代換得到∠1=∠CBD,根據(jù)平行線的判定定理得到GF∥BC,證得MD∥GF,根據(jù)平行線的性質(zhì)即可得到結(jié)論.
【考點(diǎn)精析】掌握平行線的判定是解答本題的根本,需要知道同位角相等,兩直線平行;內(nèi)錯(cuò)角相等,兩直線平行;同旁內(nèi)角互補(bǔ),兩直線平行.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,線段AC、BD交于點(diǎn)M,過B、D兩點(diǎn)分別作AC的垂線段BF、DE,AB=CD.
(1)若∠A=∠C,求證FM=EM;
(2)若FM=EM,則∠A=∠C.是真命題嗎?(直接判斷,不必證明)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,梯形ABCD中,AD∥BC,∠C=90°,且AB=AD,連接BD,過點(diǎn)A作BD的垂線,交BC于E,若EC=3cm,CD=4cm,則梯形ABCD的面積是_________cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】蘋果的單價(jià)為a元/千克,香蕉的單價(jià)為b元/千克,買2千克蘋果和3千克香蕉共需( 。
A.(a+b)元
B.(3a+2b)元
C.(2a+3b)元
D.5(a+b)元
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2018年國(guó)慶小長(zhǎng)假,泰安市旅游再次交出漂亮“成績(jī)單”,全市納入重點(diǎn)監(jiān)測(cè)的21個(gè)旅游景區(qū)、旅游大項(xiàng)目、鄉(xiāng)村旅游點(diǎn)實(shí)現(xiàn)旅游收入近132000000元,將132000000用科學(xué)記數(shù)法表示為( 。
A. 1.32×109B. 1.32×108C. 1.32×107D. 1.32×106
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖,△ABC中,AC=BC,以BC為直徑的⊙O交AB于E,過點(diǎn)E作EG⊥AC于G,交BC的延長(zhǎng)線于F.
(1)求證:AE=BE;
(2)求證:FE是⊙O的切線;
(3)若FE=4,F(xiàn)C=2,求⊙O的半徑及CG的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,四邊形是矩形,點(diǎn)、的坐標(biāo)分別為, .點(diǎn)是線段上的動(dòng)點(diǎn)(與端點(diǎn)、不重合).過點(diǎn)作直線交折線于點(diǎn).當(dāng)點(diǎn)在線段上時(shí),若矩形關(guān)于直線的對(duì)稱圖形為四邊形,試探究與矩形的重疊部分的面積是否發(fā)生變化?若不變,求出該重疊部分的面積;若改變,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】平面直角坐標(biāo)系內(nèi),與點(diǎn)P(﹣3,2)關(guān)于原點(diǎn)對(duì)稱的點(diǎn)的坐標(biāo)是( )
A.(3,﹣2)
B.(2,3)
C.(2,﹣3)
D.(﹣3,﹣2)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com