如圖,△ABC為等腰直角三角形,∠A=90°,AB=AC=,⊙A與BC相切,則圖中陰影部分的面積為( )

A.
B.
C.
D.
【答案】分析:首先明確S陰影=S△ABC-S扇形,然后依面積公式計算即可.
解答:解:∵∠A=90°,AB=AC=
∴△ABC是等腰直角三角形,
AD是△ABC的斜邊上的中線,AD=1,
∴陰影部分的面積S陰影=S△ABC-S扇形=××-=1-
故選C.
點評:本題利用了等腰直角三角形的性質,等腰直角三角形的面積公式和扇形的面積公式求解.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

2、如圖,△ABC為等腰三角形,AB=AC,∠A=40°,D,E,F(xiàn)分別在BC,AC,AB上,且CE=CD,BD=BF,則∠EDF的度數(shù)為( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,△ABC為等腰直角三角形,它的面積為8平方厘米,以它的斜邊為邊的正方形BCDE的面積為(  )平方厘米.
A、16B、24C、64D、32

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,△ABC為等腰直角三角形∠BAC=90°,AD是斜邊BC上的中線,△ABD旋轉到△ACE的位置.
(1)旋轉中心是哪一點?旋轉角度是多少度?
(2)四邊形ADCE是正方形嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•六合區(qū)一模)如圖,△ABC為等腰直角三角形,∠C=90°,若在某一平面直角坐標系中,頂點C的坐標為(1,1),B的坐標為(2,0).則頂點A的坐標是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,△ABC為等腰三角形,如果把它沿底邊BC翻折后,得到△DBC,那么四邊形ABDC為( 。

查看答案和解析>>

同步練習冊答案