【題目】如圖,四邊形ABCD中,AB=AD,AC=5,DAB=DCB=90°,則四邊形ABCD的面積為( 。

A. 15 B. 12.5 C. 14.5 D. 17

【答案】B

【解析】過(guò)AAEAC,交CB的延長(zhǎng)線于E,判定ACD≌△AEB,即可得到ACE是等腰直角三角形,四邊形ABCD的面積與ACE的面積相等,根據(jù)SACE=×5×5=12.5,即可得出結(jié)論.

如圖,過(guò)AAEAC,交CB的延長(zhǎng)線于E,

∵∠DAB=DCB=90°,

∴∠D+ABC=180°=ABE+ABC,

∴∠D=ABE,

又∵∠DAB=CAE=90°,

∴∠CAD=EAB,

又∵AD=AB,

∴△ACD≌△AEB,

AC=AE,即ACE是等腰直角三角形,

∴四邊形ABCD的面積與ACE的面積相等,

SACE=×5×5=12.5,

∴四邊形ABCD的面積為12.5,

故選B.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)E在△ABC外部,點(diǎn)D在邊BC上,DE交AC于點(diǎn)F.若∠1=∠2=∠3,AC=AE,求證△ABC≌△ADE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,三條公路兩兩相交,交點(diǎn)分別為A、B、C,現(xiàn)計(jì)劃修一個(gè)油庫(kù),要求到三條公路的距離相等,可供選擇的地址有(

A. 一處 B. 二處 C. 三處 D. 四處

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是二次函數(shù)y=ax2+bx+c圖象的一部分,圖象過(guò)點(diǎn)A(﹣3,0),對(duì)稱(chēng)軸為直線x=﹣1,給出四個(gè)結(jié)論,其中正確結(jié)論是( )

A.b2<4ac
B.2a+b=0
C.a+b+c>0
D.若點(diǎn)B( ,y1)、C( ,y2)為函數(shù)圖象上的兩點(diǎn),則y1<y2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC中,ADBC邊上的高,AE、BF分別是∠BAC、ABC的平分線,∠BAC=50°,ABC=60°,則∠EAD+ACD=(  )

A. 75° B. 80° C. 85° D. 90°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】二次函數(shù)y=ax2+bx+c的圖象如圖所示,若點(diǎn)A(﹣1,y1)、B(﹣6,y2)是它圖象上的兩點(diǎn),則y1與y2的大小關(guān)系是( )

A.y1<y2
B.y1=y2
C.y1>y2
D.不能確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在數(shù)學(xué)活動(dòng)課上,小明提出這樣一個(gè)問(wèn)題:∠B=∠C=90°,EBC的中點(diǎn),DE平分∠ADC,如圖,則下列說(shuō)法正確的有幾個(gè)?

(1)AE平分∠DAB;(2)△EBA≌△DCE; (3)AB+CD=AD;(4)AE⊥DE;(5)AB//CD;

大家一起熱烈地討論交流,小紅第一個(gè)得出正確答案,是( ).

A. 2個(gè) B. 3個(gè) C. 4個(gè) D. 5個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在Rt△ABC中,∠C=90°,BC=8,AC=6,將△ABC沿AE折疊 使點(diǎn)C恰好落在AB邊上的點(diǎn)F.BE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方形ABCD中,將正方形的邊AD繞點(diǎn)A順時(shí)針旋轉(zhuǎn)到AE,連接BE、DE,過(guò)點(diǎn)A作AF⊥BE于F,交直線DE于P.

(1)如圖①,若∠DAE=40°,求∠P的度數(shù);
(2)如圖②,若90°<∠DAE<180°,其它條件不變,試探究線段AP、DP、EP之間的數(shù)量關(guān)系,并說(shuō)明理由;
(3)繼續(xù)旋轉(zhuǎn)線段AD,若旋轉(zhuǎn)角180°<∠DAE<270°,則線段AP、DP、EP之間的數(shù)量關(guān)系為(直接寫(xiě)出結(jié)果)

查看答案和解析>>

同步練習(xí)冊(cè)答案