【題目】如圖所示是某公園為迎接“中國(guó)–南亞博覽會(huì)”設(shè)置的一休閑區(qū).,弧的半徑長(zhǎng)是米,是的中點(diǎn),點(diǎn)在弧上,,則圖中休閑區(qū)(陰影部分)的面積是( )
A. 米 B. 米 C. 米 D. 米
【答案】C
【解析】
先根據(jù)半徑OA長(zhǎng)是6米,C是OA的中點(diǎn)可知OC=OA=3米,再在Rt△OCD中,利用勾股定理求出CD的長(zhǎng),根據(jù)銳角三角函數(shù)的定義求出∠DOC的度數(shù),由S陰影=S扇形AOD-S△DOC即可得出結(jié)論.
連接OD,
∵弧AB的半徑OA長(zhǎng)是6米,C是OA的中點(diǎn),
∴OC=OA=3米,
∵∠AOB=90°,CD∥OB,
∴CD⊥OA,
在Rt△OCD中,
∵OD=6,OC=3,
∴CD=米,
∵sin∠DOC=,
∴∠DOC=60°,
∴S陰影=S扇形AOD-S△DOC==(6π)米2.
故選C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】工藝美術(shù)中,常需設(shè)計(jì)對(duì)稱圖案.在如圖的正方形網(wǎng)格中,點(diǎn),的坐標(biāo)分別為,.請(qǐng)?jiān)趫D中再找一個(gè)格點(diǎn),使它與已知的個(gè)格點(diǎn)組成軸對(duì)稱圖形,則點(diǎn)的坐標(biāo)為________(如果滿足條件的點(diǎn)不止一個(gè),請(qǐng)將它們的坐標(biāo)都寫(xiě)出來(lái)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,A(a,0),B(0,b),且|a+4|+b2﹣86+16=0.
(1)求a,b的值;
(2)如圖1,c為y軸負(fù)半軸上一點(diǎn),連CA,過(guò)點(diǎn)C作CD⊥CA,使CD=CA,連BD.求證:∠CBD=45°;
(3)如圖2,若有一等腰Rt△BMN,∠BMN=90°,連AN,取AN中點(diǎn)P,連PM、PO.試探究PM和PO的關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,AB=BC,將△ABC繞點(diǎn)B順時(shí)針旋轉(zhuǎn)α度,得到△A1BC1,A1B交AC于E,A1C1分別交AC、BC于點(diǎn)D、F,下列結(jié)論:①∠CDF=α,②A1E=CF,③DF=FC,④AD=CE,⑤A1F=CE.其中一定正確的有
A. ①②④ B. ②③④ C. ①②⑤ D. ③④⑤
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線,與和分別相切于點(diǎn)和點(diǎn).點(diǎn)和點(diǎn)分別是和上的動(dòng)點(diǎn),沿和平移.的半徑為,.下列結(jié)論錯(cuò)誤的是( )
A. B. 若與相切,則
C. 若,則與相切 D. 和的距離為
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義:一個(gè)自然數(shù),右邊的數(shù)字總比左邊的數(shù)字小,我們稱它為“下滑數(shù)”(如:32,641,8531等).現(xiàn)從兩位數(shù)中任取一個(gè),恰好是“下滑數(shù)”的概率為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,D、E、F分別為BC、AD、BE的中點(diǎn),若△BFD的面積為6,則 △ABC的面積等于_____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,,,.動(dòng)點(diǎn),分別從點(diǎn),同時(shí)開(kāi)始移動(dòng),點(diǎn)的速度為秒,點(diǎn)的速度為秒,點(diǎn)移動(dòng)到點(diǎn)后停止,點(diǎn)也隨之停止運(yùn)動(dòng).下列時(shí)間瞬間中,能使的面積為的是( )
A. 2秒鐘 B. 3秒鐘 C. 4秒鐘 D. 5秒鐘
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】等腰直角△ABC,△MAD中,∠BAC=∠DMA=90°,連接BM,CD.且B,M,D三點(diǎn)共線
(1)當(dāng)點(diǎn)D,點(diǎn)M在BC邊下方,CD<BD時(shí),如圖①,求證:BM+CD=AM;(提示:延長(zhǎng)DB到點(diǎn)N,使MN=MD,連接AN.)
(2)當(dāng)點(diǎn)D在AC邊右側(cè),點(diǎn)M在△ABC內(nèi)部時(shí),如圖②;當(dāng)點(diǎn)D在AB邊左側(cè),點(diǎn)M在△ABC外部時(shí),如圖③,請(qǐng)直接寫(xiě)出線段BM,CD,AM之間的數(shù)量關(guān)系,不需要證明;
(3)在(1),(2)條件下,點(diǎn)E是AB中點(diǎn),MF是△AMD的角平分線,連接EF,若EF=2MF=6,則CD= .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com