如圖,△ABC中,AB=5,BC=6,BD=BC,AD⊥BC于D,E為AB延長(zhǎng)線上的一點(diǎn),且EC交AD的延長(zhǎng)線于F.
(1)設(shè)BE為x,DF為y,試用x的式子表示y.
(2)當(dāng)∠ACE=90°時(shí),求此時(shí)x的值.

【答案】分析:(1)過(guò)B作BG∥AF交BCEC于G,則可以得到△CDF∽△CBG,接著利用相似三角形的性質(zhì)得到,在Rt△ABD中,利用勾股定理可得,又△EGB∽△EFA,由此利用相似三角形的性質(zhì)即可求出y與x的函數(shù)關(guān)系;
(2)當(dāng)∠ACE=90°時(shí),則有∠FCD=∠DAC,由此得到Rt△ADC∽R(shí)t△CDF,接著利用相似三角形的性質(zhì)得到CD2=AD•DF,所以16=,從而得到,代入,即可求出x.
解答:解:(1)過(guò)B作BG∥AF交EC于G,
則△CDF∽△CBG,
,

在Rt△ABD中,可得
又∵△EGB∽△EFA,

;

(2)當(dāng)∠ACE=90°時(shí),則有∠FCD=∠DAC,
∴Rt△ADC∽R(shí)t△CDF,
,
∴CD2=AD•DF,
∴16=
,
代入,有,
解得
點(diǎn)評(píng):此題主要考查了相似三角形的性質(zhì)與判定,解題的關(guān)鍵是熟練利用相似三角形的判定與性質(zhì).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

26、已知:如圖,△ABC中,點(diǎn)D在AC的延長(zhǎng)線上,CE是∠DCB的角平分線,且CE∥AB.
求證:∠A=∠B.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

27、已知:如圖,△ABC中,∠BAC=60°,D、E兩點(diǎn)在直線BC上,連接AD、AE.
求:∠1+∠2+∠3+∠4.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

27、如圖,△ABC中,AD⊥BC于D,DN⊥AC于N,DM⊥AB于M
求證:∠ANM=∠B.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

14、如圖,△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,則∠C的大小是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知,如圖,△ABC中,點(diǎn)D在BC上,且∠1=∠C,∠2=2∠3,∠BAC=70°.
(1)求∠2的度數(shù);
(2)若畫∠DAC的平分線AE交BC于點(diǎn)E,則AE與BC有什么位置關(guān)系,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案