如圖(1),拋物線y=x2-2x+k與x軸交于AB兩點(diǎn),與y軸交于點(diǎn)C(0,-3).[圖(2)、圖(3)為解答備用圖]

(1)k=________,點(diǎn)A的坐標(biāo)為________,點(diǎn)B的坐標(biāo)為________

(2)設(shè)拋物線y=x2-2x+k的頂點(diǎn)為M,求四邊形ABMC的面積;

(3)在x軸下方的拋物線上是否存在一點(diǎn)D,使四邊形ABDC的面積最大?若存在,請(qǐng)求出點(diǎn)D的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;

(4)在拋物線y=x2-2x+k上求點(diǎn)Q,使△BCQ是以BC為直角邊的直角三角形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,拋物線y=-(x-m)2的頂點(diǎn)為A,直線l:y=
3
x-
3
m
與y軸的交點(diǎn)為B,其精英家教網(wǎng)中m>0.
(1)寫(xiě)出拋物線對(duì)稱(chēng)軸及頂點(diǎn)A的坐標(biāo);(用含有m的代數(shù)式表示)
(2)證明點(diǎn)A在直線l上,并求∠OAB的度數(shù);
(3)動(dòng)點(diǎn)Q在拋物線的對(duì)稱(chēng)軸上,在對(duì)稱(chēng)軸左側(cè)的拋物線上是否存在點(diǎn)P,使以P、Q、A為頂點(diǎn)的三角形與△OAB全等?若存在,求出m的值,并寫(xiě)出所有符合上述條件的P點(diǎn)坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知拋物線y=
1
2
x2+mx+n(n≠0)與直線y=x交于A、B兩點(diǎn),與y軸交于精英家教網(wǎng)點(diǎn)C,OA=OB,BC∥x軸.
(1)求拋物線的解析式;
(2)設(shè)D、E是線段AB上異于A、B的兩個(gè)動(dòng)點(diǎn)(點(diǎn)E在點(diǎn)D的上方),DE=
2
,過(guò)D、E兩點(diǎn)分別作y軸的平行線,交拋物線于F、G,若設(shè)D點(diǎn)的橫坐標(biāo)為x,四邊形DEGF的面積為y,求x與y之間的關(guān)系式,寫(xiě)出自變量x的取值范圍,并回答x為何值時(shí),y有最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,一條拋物線y=ax2+bx(a≠0)的頂點(diǎn)坐標(biāo)為(2,
83
),正方形ABCD的邊AB落在x軸的正半軸上,頂點(diǎn)C、D在這條拋物線上.
(1)求這條拋物線的表達(dá)式;
(2)求正方形ABCD的邊長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•本溪)如圖,已知拋物線y=ax2+bx+3經(jīng)過(guò)點(diǎn)B(-1,0)、C(3,0),交y軸于點(diǎn)A,將線段OB繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°,點(diǎn)B的對(duì)應(yīng)點(diǎn)為點(diǎn)M,過(guò)點(diǎn)A的直線與x軸交于點(diǎn)D(4,0).直角梯形EFGH的上底EF與線段CD重合,∠FEH=90°,EF∥HG,EF=EH=1.直角梯形EFGH從點(diǎn)D開(kāi)始,沿射線DA方向勻速運(yùn)動(dòng),運(yùn)動(dòng)的速度為1個(gè)長(zhǎng)度單位/秒,在運(yùn)動(dòng)過(guò)程中腰FG與直線AD始終重合,設(shè)運(yùn)動(dòng)時(shí)間為t秒.
(1)求此拋物線的解析式;
(2)當(dāng)t為何值時(shí),以M、O、H、E為頂點(diǎn)的四邊形是特殊的平行四邊形;
(3)作點(diǎn)A關(guān)于拋物線對(duì)稱(chēng)軸的對(duì)稱(chēng)點(diǎn)A′,直線HG與對(duì)稱(chēng)軸交于點(diǎn)K,當(dāng)t為何值時(shí),以A、A′、G、K為頂點(diǎn)的四邊形為平行四邊形?請(qǐng)直接寫(xiě)出符合條件的t值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知拋物線y=-x2+2x+3交x軸于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C.
(1)求點(diǎn)A,B,C的坐標(biāo).
(2)若點(diǎn)M為拋物線的頂點(diǎn),連接BC,CM,BM,求△BCM的面積.
(3)若點(diǎn)M是第一象限拋物線上的一個(gè)動(dòng)點(diǎn),連接BC,CM,BM,求△BCM的最大面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案