【題目】如圖,在平面直角坐標(biāo)系中,⊙A的半徑為1,圓心A點(diǎn)的坐標(biāo)為(2,1).直線OM是一次函數(shù)y=-x的圖象.將直線OM沿x軸正方向平行移動(dòng).
(1)填空:直線OM與x軸所夾的銳角度數(shù)為 °;
(2)求出運(yùn)動(dòng)過(guò)程中⊙A與直線OM相切時(shí)的直線OM的函數(shù)關(guān)系式;(可直接用(1)中的結(jié)論)
(3)運(yùn)動(dòng)過(guò)程中,當(dāng)⊙A與直線OM相交所得的弦對(duì)的圓心角為90°時(shí),直線OM的函數(shù)關(guān)系式.
【答案】(1)45;(2) y=-x+3-或y=-x+3+;(3) y=-x+2或y=-x+4.
【解析】
(1)利用直線y=x上點(diǎn)的坐標(biāo)特征易得直線y=x為第二、三四象限的角平分線,則直線OM與x軸所夾的銳角度數(shù)為45°;
(2)如圖1中,設(shè)⊙A與x軸相切于點(diǎn)C,平移后的直線OM與⊙A相切于點(diǎn)E,交x軸于P,連接AE,AC,作ED⊥AC于D.求出點(diǎn)E坐標(biāo),利用待定系數(shù)法即可解決問(wèn)題,再根據(jù)對(duì)稱性解決另一種相切情形;
(3)當(dāng)平移后的直線OM經(jīng)過(guò)點(diǎn)C(⊙A與x軸的切點(diǎn))時(shí),弦EC所對(duì)的圓心角為90°,此時(shí)直線EC的解析式為y=x+2.再根據(jù)對(duì)稱性解決另一種情形.
解:(1)∵直線y=-x上點(diǎn)到x軸和y軸的距離相等,
∴直線y=x為第二、四象限的角平分線,
∴直線OM與x軸所夾的銳角度數(shù)為45°;
故答案為45.
(2)如圖1中,設(shè)⊙A與x軸相切于點(diǎn)C,平移后的直線OM與⊙A相切于點(diǎn)E,交x軸于P,連接AE,AC,作ED⊥AC于D.
∵∠OPE=45°,
∴∠EPC=135°,
∵∠AEP=∠ACP=90°,
∴∠EAD=45°,
∵AE=1,
∴AD=DE=
∴CD=1-
∴E(2-,1-),
設(shè)直線PE的解析式為y=-x+b,
則有1-=-(2-)+b,
∴b=3-,
∴平移后直線OM的解析式為y=-x+3-.
根據(jù)對(duì)稱性可知,直線PE向右平移個(gè)單位直線與⊙A相切于點(diǎn)E′,此時(shí)直線OM的解析式為y=-x+3+.
綜上所述,運(yùn)動(dòng)過(guò)程中⊙A與直線OM相切時(shí)的直線OM的函數(shù)關(guān)系式為y=-x+3-或y=-x+3+.
(3)當(dāng)平移后的直線OM經(jīng)過(guò)點(diǎn)C(⊙A與x軸的切點(diǎn))時(shí),弦EC所對(duì)的圓角為90°,此時(shí)直線EC的解析式為y=-x+2.
根據(jù)對(duì)稱性可知,當(dāng)直線EC繼續(xù)向右平移2個(gè)單位,與⊙A交于點(diǎn)D,E′,此時(shí)∠DAE′=90°,此時(shí)直線的解析式為y=-x+4.
綜上所述,滿足條件的直線OM的解析式為:y=-x+2或y=-x+4.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠B=45°,AD⊥BC于點(diǎn)D,tan∠ACD=2,以D為圓心,DC為半徑作⊙D,交AD于點(diǎn)G,F是AB的中點(diǎn),連接GF.
(1)求證:GF是⊙D的切線;
(2)連接CG并延長(zhǎng)交AB于點(diǎn)H,若AH=2,求AC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,PA,PB分別與⊙O相切于點(diǎn)A,B,點(diǎn)M在PB上,且OM∥AP,MN⊥AP,垂足為N.
(1)求證:OM = AN;
(2)若⊙O的半徑R = 3,PA = 9,求OM的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,以半圓中的一條弦BC(非直徑)為對(duì)稱軸將弧BC折疊后與直徑AB交于點(diǎn)D,若=,且AB=10,則CB的長(zhǎng)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,是的直徑,、為上的點(diǎn),為圓外一點(diǎn),、均與圓相切,設(shè),,則與滿足的關(guān)系式為( )
A.B.C.D.以上都不對(duì)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】《國(guó)家學(xué)生體質(zhì)健康標(biāo)準(zhǔn)》規(guī)定:體質(zhì)測(cè)試成績(jī)達(dá)到90.0分及以上的為優(yōu)秀;達(dá)到80.0分至89.9分的為良好;達(dá)到60.0分至79.9分的為及格;59.9分及以下為不及格,某校為了了解九年級(jí)學(xué)生體質(zhì)健康狀況,從該校九年級(jí)學(xué)生中隨機(jī)抽取了10%的學(xué)生進(jìn)行體質(zhì)測(cè)試,測(cè)試結(jié)果如下面的統(tǒng)計(jì)表和扇形統(tǒng)計(jì)圖所示。
各等級(jí)學(xué)生平均分統(tǒng)計(jì)表
等級(jí) | 優(yōu)秀 | 良好 | 及格 | 不及格 |
平均分 | 92.1 | 85.0 | 69.2 | 41.3 |
各等級(jí)學(xué)生人數(shù)分布扇形統(tǒng)計(jì)圖
(1)扇形統(tǒng)計(jì)圖中“不及格”所占的百分比是 ;
(2)計(jì)算所抽取的學(xué)生的測(cè)試成績(jī)的平均分;
(3)若所抽取的學(xué)生中所有不及格等級(jí)學(xué)生的總分恰好等于某一個(gè)良好等級(jí)學(xué)生的分?jǐn)?shù),請(qǐng)估計(jì)該九年級(jí)學(xué)生中約有多少人達(dá)到優(yōu)秀等級(jí)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AC是⊙O的直徑,弦BD⊥AO于E,連接BC,過(guò)點(diǎn)O作OF⊥BC于F,若BD=8cm,AE=2cm,
(1)求⊙O的半徑;
(2)求O到弦BC的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形ABCD中,AB=m,AD=n.
(1)若m=4,矩形ABCD的邊CD上是否存在點(diǎn)P,使得∠APB=90°?寫出點(diǎn)P存在或不存在的可能情況和此時(shí)n滿足的條件.
(2)矩形ABCD的邊上是否存在點(diǎn)P,使得∠APB=60°?寫出點(diǎn)P存在或不存在的可能情況和此時(shí)m、n滿足的條件.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】二次函數(shù)(是常數(shù),)的自變量與函數(shù)值的部分對(duì)應(yīng)值如下表:
… | 0 | 1 | 2 | … | |||
… | … |
且當(dāng)時(shí),與其對(duì)應(yīng)的函數(shù)值.有下列結(jié)論:①;②和3是關(guān)于的方程的兩個(gè)根;③.其中,正確結(jié)論的個(gè)數(shù)是( )
A. 0B. 1C. 2D. 3
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com