【題目】如圖,已知AB:BC:CD=2:3:4,E、F分別為AB、CD中點(diǎn),且EF=15.求線段AD的長(zhǎng).
【答案】解:設(shè)AB=2x,BC=3x,CD=4x, ∵E、F分別是AB和CD的中點(diǎn),
∴BE= AB=x,CF= CD=2x,
∵EF=15cm,
∴BE+BC+CF=15cm,
∴x+3x+2x=15,
解得:x= ,
∴AD=AB+BC+CD=2x+3x+4x=9x= cm
【解析】根據(jù)題意可設(shè)AB=2x,然后根據(jù)圖形列出方程即可求出AD的長(zhǎng)度.
【考點(diǎn)精析】關(guān)于本題考查的兩點(diǎn)間的距離,需要了解同軸兩點(diǎn)求距離,大減小數(shù)就為之.與軸等距兩個(gè)點(diǎn),間距求法亦如此.平面任意兩個(gè)點(diǎn),橫縱標(biāo)差先求值.差方相加開(kāi)平方,距離公式要牢記才能得出正確答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校積極響應(yīng)上級(jí)的號(hào)召,舉行了“決不讓一個(gè)學(xué)生因貧困而失學(xué)”的捐資助學(xué)活動(dòng),其中6個(gè)班同學(xué)的捐款平均數(shù)如下表:
班級(jí) | 一班 | 二班 | 三班 | 四班 | 五班 | 六班 |
捐款平均數(shù)(元) | 6 | 4.6 | 4.1 | 3.8 | 4.8 | 5.2 |
則這組數(shù)據(jù)的中位數(shù)是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)平面內(nèi),二次函數(shù)圖象的頂點(diǎn)為A(1,﹣4),且過(guò)點(diǎn)B(3,0).
(1)求該二次函數(shù)的解析式;
(2)將該二次函數(shù)圖象向右平移幾個(gè)單位,可使平移后所得圖象經(jīng)過(guò)坐標(biāo)原點(diǎn)?并直接寫出平移后所得圖象與x軸的另一個(gè)交點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,平面直角坐標(biāo)系中,矩形OABC的一邊OA在x軸上,點(diǎn)B的坐標(biāo)為(4,3),雙曲線(x>0)交線段BC于點(diǎn)P(不與端點(diǎn)B、C重合),交線段AB于點(diǎn)Q
(1)若P為邊BC的中點(diǎn),求雙曲線的函數(shù)表達(dá)式及點(diǎn)Q的坐標(biāo);
(2)求k的取值范圍;
(3)連接PQ,AC,判斷:PQ∥AC是否總成立?并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】長(zhǎng)方形具有四個(gè)內(nèi)角均為直角,并且兩組對(duì)邊分別相等的特征.如圖,把一張長(zhǎng)方形紙片ABCD折疊,使點(diǎn)C與點(diǎn)A重合,折痕為EF.
(1)如果∠DEF=130°,求∠BAF的度數(shù);
(2)判斷△ABF和△AGE是否全等嗎?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,拋物線C:y=mx2+4x+1.
(1)當(dāng)拋物線C經(jīng)過(guò)點(diǎn)A(﹣5,6)時(shí),求拋物線的表達(dá)式及頂點(diǎn)坐標(biāo);
(2)若拋物線C:y=mx2+4x+1(m>0)與x軸的交點(diǎn)的橫坐標(biāo)都在﹣1和0之間(不包括﹣1和0),結(jié)合函數(shù)的圖象,求m的取值范圍;
(3)參考(2)小問(wèn)思考問(wèn)題的方法解決以下問(wèn)題:
關(guān)于x的方程x﹣4=在0<x<4范圍內(nèi)有兩個(gè)解,求a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列各組量中,不是互為相反意義的量的是( ).
A.收入200元與支出20元
B.上升10米與下降7米
C.超過(guò)0.05米與不足0.03米
D.增大2歲與減少2升
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知和都是關(guān)于x、y的方程y=kx+b的解.
(1)求k、b的值
(2)若不等式3+2x>m+3x的最大整數(shù)解是k,求m的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com