【題目】一種圓環(huán)(如圖),它的外圓直徑是8厘米,環(huán)寬1厘米.

①如果把這樣的2個圓環(huán)扣在一起并拉緊(如圖2),長度為___________厘米;

②如果用x個這樣的圓環(huán)相扣并拉緊,長度為y厘米,則yx之間的關系式是___________

【答案】 14 y=6x+2

【解析】分析:①由于圓環(huán)的外圓直徑是8厘米,環(huán)寬1厘米,所以內(nèi)圓直徑是6厘米.如果把這樣的2個圓環(huán)扣在一起并拉緊,那么長度為2個內(nèi)圓直徑+2個環(huán)寬;

②如果用x個這樣的圓環(huán)相扣并拉緊,那么長度為x個內(nèi)圓直徑+2個環(huán)寬.

詳解①結合圖形可知把這樣的2個圓環(huán)扣在一起并拉緊,那么長度為2個內(nèi)圓直徑+2個環(huán)寬,長度為6×2+2=14cm;

②根據(jù)以上規(guī)律可知如果用x個這樣的圓環(huán)相扣并拉緊,長度yy=6x+2

故答案為:14y=6x+2

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】一堆有紅、白兩種顏色的球若干個,已知白球的個數(shù)比紅球少,但白球的2倍比紅球多.若把每一個白球都記作“2”,每一個紅球都記作“3”,則總數(shù)為“60”,那么這兩種球各有多少個?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知ABC 中,A=60°,ACB=40°,DBC邊延長線上一點,BM平分ABC,E為射線BM上一點.

1)如圖1,連接CE,

CEAB,求BEC的度數(shù);

CE平分ACD,求BEC的度數(shù).

2)若直線CE垂直于ABC的一邊,請直接寫出BEC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知P(﹣1,2),則點P所在的象限為( 。

A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,弦CD⊥AB,∠CDB=30°,CD= ,則陰影部分圖形的面積為( )

A.4π
B.2π
C.π
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某市為創(chuàng)建省衛(wèi)生城市,有關部門決定利用現(xiàn)有的4200盆甲種花卉和3090盆乙種花卉,搭配A、B兩種園藝造型共60個,擺放于入城大道的兩側,搭配每個造型所需花卉數(shù)量的情況下表所示,結合上述信息,解答下列問題:

造型花卉

A

80

40

B

50

70


(1)符合題意的搭配方案有幾種?
(2)如果搭配一個A種造型的成本為1000元,搭配一個B種造型的成本為1500元,試說明選用那種方案成本最低?最低成本為多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】探索規(guī)律:觀察下面由※組成的圖案和算式,解答問題:

1+3=22=4

1+3+5=32=9

1+3+5+7=42=16

1+3+5+7+9=52=25

(1)猜想1+3+5+7+9+…+29=   = ;

(2)猜想1+3+5+7+9+…+(2n﹣1)+(2n+1)= = ;

(3)用上述規(guī)律計算:41+43+45+…+77+79.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ADABC的邊BC上的高,由下列條件中的某一個就能推出ABC是等腰三角形的是__

①∠BAD=ACD;②∠BAD=CAD;AB+BD=AC+CD;AB﹣BD=AC﹣CD.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】以下四個命題:①一個多邊形的內(nèi)角和為900°,從這個多邊形同一個頂點可畫的對角線有4條;②三角形的三條高所在的直線的交點可能在三角形的內(nèi)部或外部;③多邊形的所有內(nèi)角中最多有3個銳角;④△ABC中,若∠A=2∠B=3∠C,則△ABC為直角三角形.其中真命題的是_______________.(填序號)

查看答案和解析>>

同步練習冊答案