【題目】為了解全校學(xué)生對新聞、體育、動畫、娛樂、戲曲五類電視節(jié)目的喜愛情況,隨機選

取該校100名學(xué)生進(jìn)行調(diào)查,要求每名學(xué)生只選出一類自己最喜愛的節(jié)目,根據(jù)調(diào)查結(jié)果 繪制了不完整的條形圖和扇形統(tǒng)計圖(如圖),

根據(jù)圖中提供的信息,解答下列問題:

1)這次抽樣調(diào)查的女生人數(shù)是_______人;

2)扇形統(tǒng)計圖中, “A”組對應(yīng)的圓心角度數(shù)為_______,并將條形圖中補充完整;

3)若該校有 1800 名學(xué)生,試估計全校最喜歡新聞和戲曲的學(xué)生一共有多少人?

【答案】140人;(218°,補圖見解析;(3288.

【解析】

1)用最喜愛C類節(jié)目的女生人數(shù)除以其所占的百分比即可求出這次抽樣調(diào)查的女生人數(shù);

2)用最喜愛A類節(jié)目的女生人數(shù)除以這次抽樣調(diào)查的女生人數(shù),得到“A”組的百分比,再用360°除以這個百分比求出圓心角度數(shù).用這次抽樣調(diào)查的女生人數(shù)分別減去AC、D、E組的女生人數(shù),得出B組女生人數(shù);先求出這次抽樣調(diào)查的男生人數(shù),再分別減去A、BC、E組的男生人數(shù),得出D組男生人數(shù);進(jìn)而補全條形圖;

3)利用樣本估計總體的思想,用1800乘以樣本中最喜歡新聞和戲曲的學(xué)生所占的百分比即可.

1)這次抽樣調(diào)查的女生人數(shù)是=40(人).

故答案為40;

2)扇形統(tǒng)計圖中,“A”組對應(yīng)的圓心角度數(shù)為360°×=18°

B組女生人數(shù)為40-2+14+16+4=4(人),

D組男生人數(shù)為(100-40-6+12+18+4=20(人).

條形圖補充如下:

故答案為18°;

31800×=288(人).

故估計全校最喜歡新聞和戲曲的學(xué)生一共有288人.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校計劃購買20張課桌和一批椅子,該校了解到甲、乙兩家商場以同樣的價格出售同一型號的課桌與椅子,課桌報價200/張,椅子報價50/把.甲、乙兩商場分別給出了不同的優(yōu)惠方案.甲商場的優(yōu)惠方案:凡買一張課桌贈送一把椅子;乙商場的優(yōu)惠方案:所有課桌和椅子均按報價的九折銷售.若該校需要把椅子,在甲商場購買所花費用為(元),在乙商場購買所花總費用為(元).

1)請分別寫出之間的函數(shù)關(guān)系式;

2)該校計劃用8100元購買課桌和椅子,選甲、乙哪一家商場可以購買到盡可能多的椅子,說明理由;

3)該校選擇甲、乙哪一家商場花費較少?說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1

2

3

4.(利用冪的運算性質(zhì)計算)

5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在RtABC中,C=90°,沿過B點的一條直線BE折疊這個三角形, 使C點與AB邊上的一點D重合.

(1)當(dāng)A滿足什么條件時,點D恰為AB的中點?寫出一個你認(rèn)為適當(dāng)?shù)臈l件,并利用此條件證明DAB的中點;

(2)在(1)的條件下,若DE=1,求ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在ABC,ADE中,∠BAC=DAE=90°,AB=ACAD=AE,點C,D,E三點在同一條直線上,連接BDBE.以下四個結(jié)論:

BD=CE;②∠ACE+DBC=45°;③BDCE;④∠BAE+DAC=180°.其中結(jié)論正確的個數(shù)是( 。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一個不透明的口袋中有3個分別標(biāo)有數(shù)字-1、1、2的小球,它們除標(biāo)的數(shù)字不同外無其他區(qū)別.

(1)隨機地從口袋中取出一小球,求取出的小球上標(biāo)的數(shù)字為負(fù)數(shù)的概率;

(2)隨機地從口袋中取出一小球,放回后再取出第二個小球,求兩次取出的數(shù)字的和等于0的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點 Aa,6),B4,b),

1)若 ab 滿足 (a b 5)2 0 ,

①求點 A,B 的坐標(biāo);

②點 D 在第一象限,且點 D 在直線 AB 上,作 DCx 軸于點 C,延長 DC P 使 PC=DC,若△PAB 的面積為 10,求 P 點的坐標(biāo);

2)如圖,將線段 AB 平移到 CD,且點 C x 軸負(fù)半軸上,點 D y 軸負(fù)半軸上, 連接 AC y 軸于點 E,連接 BD x 軸于點 F,點 M DC 延長線上,連 EM3MEC+CEO=180°,點 N AB 延長線上,點 G OF 延長線上,∠NFG= 2NFB,請?zhí)骄俊?/span>EMC 和∠BNF 的數(shù)量關(guān)系,給出結(jié)論并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,OABC是一張放在平面直角坐標(biāo)系中的矩形紙片,O為原點,點A在x軸的正半軸上,點C在y軸的正半軸上,OA=10,OC=8,在OC邊上取一點D,將紙片沿AD翻折,使點O落在BC邊上的點E處,則D點的坐標(biāo)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在甲村至乙村的公路上有一塊山地正在開發(fā),現(xiàn)有一處需要爆破.已知點與公路上的?空的距離為300米,與公路上的另一?空的距離為400米,且,如圖所示為了安全起見,爆破點周圍半徑250米范圍內(nèi)不得進(jìn)入,問在進(jìn)行爆破時,公路段是否因為有危險而需要暫時封鎖?請說明理由.

查看答案和解析>>

同步練習(xí)冊答案