滿足<x<的整數(shù)x是__________.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在平面直角坐標(biāo)系中,直線l是第一、三象限的角平分線.
實(shí)驗(yàn)與探究:
(1)由圖觀察易知A(0,2)關(guān)于直線l的對(duì)稱點(diǎn)A′的坐標(biāo)為(2,0),請(qǐng)?jiān)趫D中分別標(biāo)明B(5,3)、C(﹣2,5)關(guān)于直線l的對(duì)稱點(diǎn)B′、C′的位置,并寫出他們的坐標(biāo):B′__________、C′__________;
歸納與發(fā)現(xiàn):
(2)結(jié)合圖形觀察以上三組點(diǎn)的坐標(biāo),你會(huì)發(fā)現(xiàn):坐標(biāo)平面內(nèi)任一點(diǎn)P(a,b)關(guān)于第一、三象限的角平分線l的對(duì)稱點(diǎn)P′的坐標(biāo)為__________(不必證明);
運(yùn)用與拓廣:
(3)已知兩點(diǎn)D(1,﹣3)、E(﹣1,﹣4),試在直線l上確定一點(diǎn)Q,使點(diǎn)Q到D、E兩點(diǎn)的距離之和最小,并求出Q點(diǎn)坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,△ABC是等邊三角形,D是BC的中點(diǎn),點(diǎn)E在AC上,且AE=AD,則∠EDC=( )
A.15° B.18° C.20° D.25°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
在平面直角坐標(biāo)系中,點(diǎn)(﹣3,﹣1)在第( )象限.
A.第一象限 B.第二象限 C.第三象限 D.第四象限
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
問題提出:求邊長(zhǎng)分別為,,(a為正整數(shù))三角形的面積.
問題探究:為解決上述數(shù)學(xué)問題,我們采取數(shù)形結(jié)合和轉(zhuǎn)化的思想方法,并采取一般問題特殊化的策略來進(jìn)行探究.
探究一:當(dāng)a=1時(shí),求邊長(zhǎng)分別為、、三角形的面積.
先畫一個(gè)正方形網(wǎng)格(每個(gè)小正方形的邊長(zhǎng)為1),再在網(wǎng)格中畫出邊長(zhǎng)分別為,,的格點(diǎn)三角形△ABC(如圖①).
因?yàn)锳B是直角邊分別為2和1的Rt△ABE的斜邊,所以AB=;
因?yàn)锽C是直角邊分別為1和3的Rt△BCF的斜邊,所以BC=;
因?yàn)锳C是直角邊分別為3和2的Rt△ACG的斜邊,所以AC=;通過面積轉(zhuǎn)化,可間接求三角形△ABC的面積.
所以,S△ABC=S正方形EFCG﹣S△ABE﹣S△BCF﹣S△ACG.
(1)直接寫出圖①中S△ABC=__________.
探究二:當(dāng)a=2時(shí),求邊長(zhǎng)分別為2,,5三角形的面積.
先畫一個(gè)長(zhǎng)方形網(wǎng)格(每個(gè)小長(zhǎng)方形的長(zhǎng)為2,寬為1),再在網(wǎng)格中畫出邊長(zhǎng)分別為2,,5的格點(diǎn)三角形△ABC(如圖②).
因?yàn)锳B是直角邊分別為2和2的Rt△ABE的斜邊,所以AB=2;
因?yàn)锽C是直角邊分別為1和6的Rt△BCF的斜邊,所以BC=;
因?yàn)锳C是直角邊分別為3和4的Rt△ACG的斜邊,所以AC=5,通過面積轉(zhuǎn)化,可間接求三角形△ABC的面積.
所以,S△ABC=S正方形EFCG﹣S△ABE﹣S△BCF﹣S△ACG
(2)直接寫出圖②中S△ABC=__________.
探究三:當(dāng)a=3時(shí),求邊長(zhǎng)分別為,,3三角形的面積.
仿照上述方法解答下列問題:
(3)畫的長(zhǎng)方形網(wǎng)格中,每個(gè)小長(zhǎng)方形的長(zhǎng)應(yīng)是__________.
(4)邊長(zhǎng)分別為,,3的三角形的面積為__________.
問題解決:求邊長(zhǎng)分別為,,(a為正整數(shù))三角形的面積.
(5)類比上述方法畫長(zhǎng)方形網(wǎng)格,每個(gè)小長(zhǎng)方形的長(zhǎng)應(yīng)是__________.
(6)邊長(zhǎng)分別為,,(a為正整數(shù))的三角形的面積是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,小敏做了一個(gè)角平分儀ABCD,其中AB=AD,BC=DC.將儀器上的點(diǎn)A與∠PRQ的頂點(diǎn)R重合,調(diào)整AB和AD,使它們分別落在角的兩邊上,過點(diǎn)A,C畫一條射線AE,AE就是∠PRQ的平分線.此角平分儀的畫圖原理是:根據(jù)儀器結(jié)構(gòu),可得
△ABC≌△ADC,這樣就有∠QAE=∠PAE.則說明這兩個(gè)三角形全等的依據(jù)是( )
A.SAS B.ASA C.AAS D.SSS
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com