如圖,△ABC中,∠C=90°,∠ABC和∠EAC的平分線交于點(diǎn)D,∠ABD和∠BAD的平分線交于點(diǎn)F,則∠AFB的度數(shù)為_(kāi)_______.

112.5°
分析:根據(jù)角平分線的定義得∠EAC=2∠3,∠ABC=2∠ABD,再根據(jù)外角性質(zhì)有∠3=∠D+∠ABD,∠EAC=∠C+∠ABC,變形后有2∠3=2∠D+2∠ABD=∠C+∠ABC,則∠C=2∠D,而∠C=90°,可計(jì)算出∠D=45°;由∠ABD和∠BAD的平分線交于點(diǎn)F,則∠DAB=2∠FAB,∠ABD=2∠1,根據(jù)三角形內(nèi)角和定理得到∠DAB+∠ABD+∠D=180°,∠FAB+∠1+∠AFB=180°,變形得2∠FAB+2∠1+2∠AFB=360°,代換后得180°-∠D+2∠AFB=360°,即∠AFB=90°+∠D,把∠D=45°代入計(jì)算即可.
解答:如圖,
∵∠ABC和∠EAC的平分線交于點(diǎn)D,
∴∠EAC=2∠3,∠ABC=2∠ABD,
又∵∠3=∠D+∠ABD,∠EAC=∠C+∠ABC,
∴2∠3=2∠D+2∠ABD=∠C+∠ABC,
∴∠C=2∠D,而∠C=90°,
∴∠D=45°,
又∵∠ABD和∠BAD的平分線交于點(diǎn)F,
∴∠DAB=2∠FAB,∠ABD=2∠1,
而∠DAB+∠ABD+∠D=180°,∠FAB+∠1+∠AFB=180°,
∴2∠FAB+2∠1+2∠AFB=360°,
∴∠DAB+∠ABD+2∠AFB=360°,
∴180°-∠D+2∠AFB=360°,
∴∠AFB=90°+∠D,
而∠D=45°,
∴∠AFB=90°+22.5°=112.5°.
故答案為112.5°.
點(diǎn)評(píng):本題考查了三角形內(nèi)角和定理:三角形的內(nèi)角和為180°.也考查了三角形外角的性質(zhì)以及角平分線的定義.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

26、已知:如圖,△ABC中,點(diǎn)D在AC的延長(zhǎng)線上,CE是∠DCB的角平分線,且CE∥AB.
求證:∠A=∠B.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

27、已知:如圖,△ABC中,∠BAC=60°,D、E兩點(diǎn)在直線BC上,連接AD、AE.
求:∠1+∠2+∠3+∠4.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

27、如圖,△ABC中,AD⊥BC于D,DN⊥AC于N,DM⊥AB于M
求證:∠ANM=∠B.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

14、如圖,△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,則∠C的大小是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知,如圖,△ABC中,點(diǎn)D在BC上,且∠1=∠C,∠2=2∠3,∠BAC=70°.
(1)求∠2的度數(shù);
(2)若畫(huà)∠DAC的平分線AE交BC于點(diǎn)E,則AE與BC有什么位置關(guān)系,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案