【題目】如圖,在四邊形ABCD中,AD=12,DO=OB=5,AC=26,∠ADB=90°.求BC的長和四邊形ABCD的面積.

【答案】BC的長為12,四邊形ABCD的面積為120

【解析】試題分析:根據(jù)勾股定理求得OA的長,再根據(jù)對角線互相平分的四邊形是平行四邊形證明四邊形ABCD是平行四邊形,從而根據(jù)平行四邊形的對邊相等就可求得BC的長;根據(jù)平行四邊形的面積公式可以求得它的面積.

試題解析:在△AOD中,∠ADB=90°,AD=12,0D=5,

根據(jù)勾股定理,得

OA2=OD2+AD2=52+122=169,

∴OA=13.

∵AC=26,OA=13,

∴OA=OC,

DO=OB,

∴四邊形ABCD為平行四邊形,

∴AD=BC=12;

∵∠ADB=90°,

∴AD⊥BD,

∴S四邊形ABCD=ADBD=12×10=120,

答:BC的長為12,四邊形ABCD的面積為120.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖是一根可伸縮的魚竿,魚竿是用10節(jié)大小不同的空心套管連接而成.閑置時魚竿可收縮,完全收縮后,魚竿長度即為第1節(jié)套管的長度(如圖1所示):使用時,可將魚竿的每一節(jié)套管都完全拉伸(如圖2所示).圖3是這跟魚竿所有套管都處于完全拉伸狀態(tài)下的平面示意圖.已知第1節(jié)套管長50cm,第2節(jié)套管長46cm,以此類推,每一節(jié)套管均比前一節(jié)套管少4cm.完全拉伸時,為了使相鄰兩節(jié)套管連接并固定,每相鄰兩節(jié)套管間均有相同長度的重疊,設(shè)其長度為xcm.

(1)請直接寫出第5節(jié)套管的長度;

(2)當這根魚竿完全拉伸時,其長度為311cm,求x的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,四邊形ABCD四條邊上的中點分別為E、F、G、H,順次連接EF、FG、GH、HE,得到四邊形EFGH(即四邊形ABCD的中點四邊形).

(1)四邊形EFGH的形狀是_____,

證明你的結(jié)論.

(2)當四邊形ABCD的對角線滿足_____條件時,四邊形EFGH是矩形;

(3)當四邊形ABCD的對角線滿足_____條件時,四邊形EFGH是菱形;

(4)你學過的哪種特殊四邊形的中點四邊形是矩形?_____

(5)你學過的哪種特殊四邊形的中點四邊形是菱形?_____;

(6)你學過的哪種特殊四邊形的中點四邊形是正方形?_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1)操作發(fā)現(xiàn):

如圖,在矩形ABCD中,E是BC的中點,將△ABE沿AE折疊后得到△AFE,點F在矩形ABCD內(nèi)部,延長AF交CD于點G.猜想線段GF與GC有何數(shù)量關(guān)系?并證明你的結(jié)論.

(2)類比探究:

如圖,將(1)中的矩形ABCD改為平行四邊形,其它條件不變,(1)中的結(jié)論是否仍然成立?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示表示王勇同學騎自行車離家的距離與時間之間的關(guān)系,王勇9點離開家,15點回家,請結(jié)合圖象,回答下列問題:

到達離家最遠的地方是什么時間?離家多遠?

他一共休息了幾次?休息時間最長的一次是多長時間?

在哪些時間段內(nèi),他騎車的速度最快?最快速度是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,則下列結(jié)論:①a+b+c<0;②a﹣b+c<0;③b+2a<0;④abc>0,其中正確的是(填編號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】己知一元二次方程x2﹣3x+m﹣1=0.
(1)若方程有兩個不相等的實數(shù)根,求實數(shù)m的取值范圍;
(2)若方程有兩個相等的實數(shù)根,求此時方程的根.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線的表達式為,直線x軸交于點D,直線x軸交于點A,且經(jīng)過點B,直線、交于點.

(1)求m的值;

(2)求直線的表達式;

(3)根據(jù)圖象,直接寫出的解集.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一張直角三角形的紙片ABC,兩直角邊AC=6cm,BC=8cm.現(xiàn)將直角邊AC沿直線AD折疊,使它落在斜邊AB上,且ACAE重合,求CD的長.

查看答案和解析>>

同步練習冊答案