如圖,四邊形ABCD是正方形,點(diǎn)E、F分別是AB和AD延長線上的點(diǎn),BE=DF.
(1)求證:△CEF是等腰直角三角形;
(2)若S△CEF=
172
,①當(dāng)AF=5DF時(shí),求正方形ABCD的邊長;②通過探究,直接寫出當(dāng)AB=kDF(k>1)時(shí),正方形ABCD的面積.
分析:(1)根據(jù)正方形的性質(zhì)可得BC=CD,∠B=∠BCD=∠ADC=90°,再求出∠CDF=90°,從而得到∠B=∠CDF,再利用“邊角邊”證明△BEC和△DFC全等,根據(jù)全等三角形對應(yīng)邊相等可得EC=FC,全等三角形對應(yīng)角相等可得∠BCE=∠CF,然后求出∠ECF=90°,即可得證;
(2)①設(shè)DF=x,表示出AF=5x,然后求出BC=4x,根據(jù)勾股定理求出CE2,再根據(jù)等腰直角三角形的面積等于直角邊平方的一半列式求出x,然后求出正方形的邊長即可;
②根據(jù)①的思路表示出CE2,再根據(jù)等腰直角三角形的面積等于直角邊平方的一半列出方程表示出DF2,再求出AB2,即可得解.
解答:(1)證明:∵四邊形ABCD是正方形,
∴BC=CD,∠B=∠BCD=∠ADC=90°,
∴∠CDF=180°-∠ADC=90°,
∴∠B=∠CDF,
在△BEC和△DFC中,
BC=DC
∠B=∠CDF
BE=DF
,
∴△BEC≌△DFC(SAS),
∴EC=FC,∠BCE=∠DCF,
∵∠BCD=∠BCE+∠DCE=90°,
∴∠DCF+DCE=90°,
即∠ECF=90°,
∴△CEF是等腰直角三角形;

(2)解:①∵AF=5DF,
∴可設(shè)DF=x,(x>0),則AF=5x,BC=AD=4x,BE=x,
由勾股定理得:CE2=x2+(4x)2=17x2,
∵S△CEF=
17
2
,且△CEF是等腰直角三角形,
∴S△CEF=
1
2
×CE2=
1
2
×17x2=
17
2
,
解得:x=1,
∴AD=4,
即正方形ABCD的邊長為4;
②當(dāng)AB=kDF(k>1)時(shí),CE2=DF2+CD2=(k2+1)DF2,
∴S△CEF=
1
2
×CE2=
1
2
(k2+1)DF2=
17
2

∴DF2=
17
k2+1
,
∴AB2=k2DF2=
17k2
k2+1

即正方形的面積為
17k2
k2+1
點(diǎn)評:本題考查了正方形的性質(zhì),全等三角形的判定與性質(zhì),等腰直角三角形的判定與性質(zhì),以及勾股定理的應(yīng)用,(1)求出三角形全等是解題的關(guān)鍵,(2)根據(jù)三角形的面積列出方程是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,四邊形ABCD的對角線AC與BD互相垂直平分于點(diǎn)O,設(shè)AC=2a,BD=2b,請推導(dǎo)這個(gè)四邊形的性質(zhì).(至少3條)
(提示:平面圖形的性質(zhì)通常從它的邊、內(nèi)角、對角線、周長、面積等入手.)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,四邊形ABCD的對角線AC、BD交于點(diǎn)P,過點(diǎn)P作直線交AD于點(diǎn)E,交BC于點(diǎn)F.若PE=PF,且AP+AE=CP+CF.
(1)求證:PA=PC.
(2)若BD=12,AB=15,∠DBA=45°,求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,四邊形ABCD,AB=AD=2,BC=3,CD=1,∠A=90°,求∠ADC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,四邊形ABCD為正方形,E是BC的延長線上的一點(diǎn),且AC=CE,求∠DAE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,四邊形ABCD是正方形,點(diǎn)E是BC的中點(diǎn),∠AEF=90°,EF交正方形外角的平分線CF于F.

(I)求證:AE=EF;
(Ⅱ)若將條件中的“點(diǎn)E是BC的中點(diǎn)”改為“E是BC上任意一點(diǎn)”,其余條件不變,則結(jié)論AE=EF還成立嗎?若成立,請證明;若不成立,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案