如圖,平面直角坐標系xOy中, Rt△AOB的直角邊OA在x軸的正半軸上,點B在第一象限,并且AB=3,OA=6,將△AOB繞點O逆時針旋轉(zhuǎn)90度得到△COD.點P從點C出發(fā)(不含點C),沿射線DC方向運動,記過點D,P,B的拋物線的解析式為y=ax2+bx+c(a<0).

(1)直接寫出點D的坐標;
(2)在直線CD的上方是否存在一點Q,使得點D,O,P,Q四點構(gòu)成的四邊形是菱形,若存在,求出P與Q的坐標;
(3)當點P運動到∠DOP=45度時,求拋物線的對稱軸;
(4)求代數(shù)式a+b+c的值的取值范圍(直接寫出答案即可).

(1)D(-3;6);(2)P(3,6),Q(0,12);(3)x=;(4)

解析試題分析:(1)根據(jù)旋轉(zhuǎn)的性質(zhì)結(jié)合AB=3,OA=6即可得到結(jié)果;
(2)根據(jù)拋物線的對稱性及菱形的性質(zhì)求解即可;
(3)延長AB交直線DP于點H,連接BP,設(shè)P,可證 ∆DOP≌∆BOP,即可得到PB=DP=x+3,在正方形OAHC中,PH=6-x,BH=3,根據(jù)勾股定理即可列方程求得x的值,從而得到結(jié)果;
(4)根據(jù)二次函數(shù)的圖象與系數(shù)的關(guān)系求解即可.
(1)由題意得D(-3;6);
(2)∵O(0,0),D(-3;6),點D,O,P,Q四點構(gòu)成的四邊形是菱形
∴P(3,6),Q(0,12)
(3)延長AB交直線DP于點H,連接BP
設(shè)P,可證 ∆DOP≌∆BOP  
∴PB=DP=x+3
在正方形OAHC中,PH=6-x,BH="3"

∴CP=x=2
∴P(2,6))又D(-3,6)
∴對稱軸是直線x=.
(4)a+b+c>
考點:二次函數(shù)的綜合題
點評:二次函數(shù)的綜合題是初中數(shù)學的重點和難點,在中考中極為常見,一般以壓軸題形式出現(xiàn),難度較大.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,平面直角坐標系中,O為直角三角形ABC的直角頂點,∠B=30°,銳角頂點A在雙曲線y=
1x
上運動,則B點在函數(shù)解析式
 
上運動.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,平面直角坐標系中,⊙P與x軸分別交于A、B兩點,點P的坐標為(3,-1),AB精英家教網(wǎng)=2
3

(1)求⊙P的半徑.
(2)將⊙P向下平移,求⊙P與x軸相切時平移的距離.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,平面直角坐標系中,OB在x軸上,∠ABO=90°,點A的坐標為(1,2).將△AOB繞點A逆時針旋轉(zhuǎn)90°,則點O的對應點C的坐標為( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖:平面直角坐標系中,△ABC的三個頂點的坐標為A(a,0),B(b,0),C(0,c),且a,b,c滿足
a+2
+|b-2|+(c-b)2=0
.點D為線段OA上一動點,連接CD.
(1)判斷△ABC的形狀并說明理由;
(2)如圖,過點D作CD的垂線,過點B作BC的垂線,兩垂線交于點G,作GH⊥AB于H,求證:
S△CAD
S△DGH
=
AD
GH

(3)如圖,若點D到CA、CO的距離相等,E為AO的中點,且EF∥CD交y軸于點F,交CA于M.求
FC+2AE
3AM
的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖在平面直角坐標系中,A點坐標為(8,0),B點坐標為(0,6)C是線段AB的中點.請問在y軸上是否存在一點P,使得以P、B、C為頂點的三角形與△AOB相似?若存在,求出P點坐標;若不存在,說明理由.

查看答案和解析>>

同步練習冊答案