已知:⊙O1與⊙O2相交于點A、B,過點B作CD⊥AB,分別交⊙O1和⊙O2于點C、D.
(1)如圖,求證:AC是⊙O1的直徑;
(2)若AC=AD,
①如圖,連接BO2、O1O2,求證:四邊形O1CBO2是平行四邊形;
②若點O1在⊙O2外,延長O2O1交⊙O1于點M,在劣弧
MB
上任取一點E(點E與點B不重合),EB的延長線交優(yōu)弧
BDA
于點F,如圖所示,連接AE、AF,則AE______AB(請在橫線上填上“≥、≤、<、>”這四個不等號中的一個)并加以證明.(友情提示:結(jié)論要填在答題卡相應(yīng)的位置上)
(1)證明:∵CD⊥AB,(1分)
∴∠ABC=90°.(2分)
∴AC是⊙O1的直徑.(3分)

(2)①證明:∵CD⊥AB,
∴∠ABD=90°.
∴AD是⊙O2的直徑.(4分)
∵AC=AD,
∵CD⊥AB,
∴CB=BD.(5分)
∵O1、O2分別是AC、AD的中點,
∴O1O2CD且O1O2=
1
2
CD=CB.(6分)
∴四邊形O1CBO2是平行四邊形.(7分)
②AE>AB,(8分)
當(dāng)點E在劣弧
MC
上(不與點C重合)時,
∵AC=AD,
∴∠ACD=∠ADC.
∴∠AEB=∠ACD=∠ADC=∠AFB.
∴AE=AF.(9分)
記AF交BD為G,
∵AB⊥CD,
∴AF>AG>AB.(10分)
當(dāng)點E與點C重合時,AE=AC>AB,
當(dāng)點E在劣弧
CB
上(不與點B重合)時,設(shè)AE交CD與H,
AE>AH>AB.(11分)
綜上,AE>AB.(12分)
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,⊙O1與⊙O2內(nèi)切于點P,又⊙O1切⊙O2的直徑BE于點C,連接PC并延長交⊙O2于點A,設(shè)⊙O1,⊙O2的半徑分別為r、R,且R≥2r.求證:PC•AC是定值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,半圓O的直徑AB=4,⊙O1與半圓O外切,并且與射線BA切于點M,若AM=3,則⊙O1的半徑是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,三個半徑為
3
的圓兩兩外切,且△ABC的每一邊都與其中的兩個圓相切,那么△ABC的周長是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

兩圓的半徑分別是方程x2-3x+2=0的兩根,且圓心距d=1,則兩圓的位置關(guān)系是( 。
A.外切B.內(nèi)切C.外離D.相交

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

在一條直線的同側(cè)畫三個圓,其中一個圓的半徑是4.另兩個圓是等圓,并且每個圓都和其它兩個圓外切,和直線也相切.則等圓的半徑長為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,⊙O1和⊙O2的半徑分別是1和2,連接O1O2,交⊙O2于點P,O1O2=5,若將⊙O1繞點P按順時針方向旋轉(zhuǎn)360°,則⊙O1與⊙O2共相切______次.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

一個平面封閉圖形內(nèi)(含邊界)任意兩點距離的最大值稱為該圖形的“直徑”,封閉圖形的周長與直徑之比稱為圖形的“周率”,下面四個平面圖形(依次為正三角形、正方形、正六邊形、圓)的周率從左到右依次記為a1,a2,a3,a4,則下列關(guān)系中正確的是( 。
A.a(chǎn)4>a2>a1B.a(chǎn)4>a3>a2C.a(chǎn)1>a2>a3D.a(chǎn)2>a3>a4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖1,已知△ABC,AB=AC,以邊AB為直徑的⊙O交BC于點D,交AC于點E,連接DE.
(1)求證:DE=DC.
(2)如圖2,連接OE,將∠EDC繞點D逆時針旋轉(zhuǎn),使∠EDC的兩邊分別交OE的延長線于點F,AC的延長線于點G.試探究線段DF、DG的數(shù)量關(guān)系.

查看答案和解析>>

同步練習(xí)冊答案