【題目】有一張長 9cm,寬 5cm 的長方形硬紙板,如圖在長方形硬紙板的四個角上各截去一個邊長為 0.5cm 的正方形,如圖①所示,然后把它折疊成一個無蓋的長方體小盒,如圖②所示.

請問:

1)折疊成一個無蓋的長方體小盒的地面長.寬分別是多少?

2)這個硬紙板折疊成的小盒容積是多大?

【答案】18,4;(216

【解析】

1)首先根據(jù)題意,用長方形硬紙板的長減去小正方形的邊長的2倍,求出長方體紙盒的長是多少;然后用長方形硬紙板的寬減去小正方形的邊長的2倍,求出長方體紙盒的寬是多少;(2)根據(jù)長方體的容積=長×寬×高,求出這個紙盒的容積是多少立方厘米即可.

解:由題意得(1)無蓋的長方體小盒的長=9-2×0.5=8

無蓋的長方體小盒的寬=5-2×0.5=4

2)小盒的容積=8×4×0.5=16(立方厘米)
故答案為:(18,4;(216

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等腰三角形ABC的底邊BC長為4,面積是16,腰AC的垂直平分線EF分別交AC,AB邊于E,F點,若點DBC邊的中點,點M為線段EF上一動點,則周長的最小值為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著改革開放進程的推進,改變的不僅僅是人們的購物模式,就連支付方式也在時代的浪潮中發(fā)生著天翻地覆的改變,除了現(xiàn)金、銀行卡支付以外,還有微信、支付寶以及其他支付方式.在一次購物中,小明和小亮都想從微信、支付寶、銀行卡三種支付方式中選一種方式進行支付,請用畫樹狀圖或列表格的方法,求出兩人恰好選擇同一種支付方式的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】公元3世紀(jì)初,我國學(xué)家趙爽證明勾定理的圖形稱為“弦圖”.1876年美國總統(tǒng)Garfeild用圖1(點C、點B、點C′三點共線)進行了勾股定理的證明.△ACB與△BCB′是一樣的直角三角板,兩直角邊長為a,b,斜邊是c.請用此圖1證明勾股定理.

拓展應(yīng)用l:如圖2,以△ABC的邊AB和邊AC為邊長分別向外做正方形ABFH和正方形ACED,過點F、E分別作BC的垂線段FM、EN,則FM、EN、BC的數(shù)量關(guān)系是怎樣?直接寫出結(jié)論   

拓展應(yīng)用2:如圖3,在兩平行線mn之間有一正方形ABCD,已知點A和點C分別在直線mn上,過點D作直線lnm,已知l、n之間距離為1,l、m之間距離為2.則正方形的面積是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知數(shù)軸上點A表示的數(shù)為8,B是數(shù)軸上位于點A左側(cè)一點,且AB=20,

1)寫出數(shù)軸上點B表示的數(shù) ;

2|53|表示53之差的絕對值,實際上也可理解為53兩數(shù)在數(shù)軸上所對的兩點之間的距離.如的幾何意義是數(shù)軸上表示有理數(shù)的點與表示有理數(shù)3的點之間的距離.試探索:

①:若,則 = .②:的最小值為 .

3)動點PO點出發(fā),以每秒2個單位長度的速度沿數(shù)軸向右勻速運動,設(shè)運動時間為(>0)秒.

①:當(dāng)=1時,A,P兩點之間的距離為 ;②:當(dāng)= 時,A,P之間的距離為2.

4)動點PQ分別從O,B兩點,同時出發(fā),點P以每秒4個單位長度沿數(shù)軸向右勻速運動,Q點以P點速度的兩倍,沿數(shù)軸向右勻速運動,設(shè)運動時間為tt0)秒.當(dāng)t= ,PQ之間的距離為4.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線yax2+bx+1x軸分別交于A(10),B(3,0),與y軸交于點C

(1)求拋物線解析式;

(2)在直線BC上方的拋物線上有點P,使△PBC面積為1,求出點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】紅星中學(xué)九年級(1)班三位教師決定帶領(lǐng)本班名學(xué)生利用假期去某地旅游,楓江旅行社的收費標(biāo)準(zhǔn)為:教師全價,學(xué)生半價;而東方旅行社不管教師還是學(xué)生一律八折優(yōu)惠,這兩家旅行社的全價都是500元。

(1)用含的式子表示三位教師和位學(xué)生參加這兩家旅行社所需的費用各是多少元;

(2)如果=50時,請你計算選擇哪一家旅行社較為合算?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知點A(4,0)及在第一象限的動點P(x,y),且x+y=5,0為坐標(biāo)原點,設(shè)△OPA的面積為S.

(1)求S關(guān)于x的函數(shù)表達(dá)式;

(2)求x的取值范圍;

(3)當(dāng)S=4時,求P點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD、等腰RtBPQ的頂點P在對角線AC上(點PA、C不重合),QPBC交于E,QP延長線與AD交于點F,連接CQ.

(1)①求證:AP=CQ;②求證:PA2=AFAD;

(2)若AP:PC=1:3,求tanCBQ.

查看答案和解析>>

同步練習(xí)冊答案