【題目】已知點(diǎn)A(4,0)及在第一象限的動點(diǎn)P(x,y),且x+y=5,0為坐標(biāo)原點(diǎn),設(shè)△OPA的面積為S.

(1)求S關(guān)于x的函數(shù)表達(dá)式;

(2)求x的取值范圍;

(3)當(dāng)S=4時,求P點(diǎn)的坐標(biāo).

【答案】(1)S=10﹣2x;(2)0<x<5;(3)(3,2)

【解析】

(1)根據(jù)題意畫出圖形,由xy=5可知y=5﹣x ,再由三角形的面積公式即可得出結(jié)論;
(2)由點(diǎn)Px,y)在第一象限,且xy=5得出x的取值范圍即可;
(3)把S=4代入(1)中的關(guān)系式求出x的值,進(jìn)而可得出y的值.

1)如圖:

xy5,

y5x,

S×4×5x)=102x;

2)∵點(diǎn)Px,y)在第一象限,且xy5,

0x5;

3)∵由(1)知,S102x,

102x4,解得x3,

y2,

P3,2).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是二次函數(shù)y=ax2+bx+c的圖象,其對稱軸為x=1,下列結(jié)論:①abc>0;②2a+b=0;③4a+2b+c<0;④若(﹣ ),( )是拋物線上兩點(diǎn),則y1<y2其中結(jié)論正確的是( )

A.①②
B.②③
C.②④
D.①③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在ABC中,AB:BC:CA=3:4:5,且周長為36cm,點(diǎn)P從點(diǎn)A開始沿AB邊向點(diǎn)B以每秒1cm的速度移動;點(diǎn)Q從點(diǎn)B沿BC邊向點(diǎn)C以每秒2cm的速度移動;如果同時出發(fā),則過3秒時,求BPQ的面積。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某鞋店銷售了9雙鞋,各種尺碼的銷售量如下:

鞋的尺碼

20

21

22

23

銷售量(雙)

1

2

4

2

1)計算這9雙鞋尺碼的平均數(shù)、中位數(shù)和眾數(shù).

2)哪一個指標(biāo)是鞋廠最感興趣的指標(biāo)?哪一個指標(biāo)是鞋廠最不感興趣的?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線l1經(jīng)過點(diǎn)A(﹣1,0)和點(diǎn)B(1,4)

(1)求直線l1的表達(dá)式;

(2)若點(diǎn)P是x軸上的點(diǎn),且△APB的面積為8,求出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知平行四邊形ABCD中,CE平分∠BCD且交AD于點(diǎn)E,AF∥CE,且交BC于點(diǎn)F.
(1)求證:△ABF≌△CDE;
(2)如圖,若∠1=65°,求∠B的大。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,BD是對角線,AE⊥BD于點(diǎn)E,CF⊥BD于點(diǎn)F,試判斷四邊形AECF是不是平行四邊形,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC和△DEF都是等腰直角三角形,∠BAC=∠EDF=90°,△DEF的頂點(diǎn)E與△ABC的斜邊BC的中點(diǎn)重合.將△DEF繞點(diǎn)E旋轉(zhuǎn),旋轉(zhuǎn)過程中,線段DE與線段AB相交于點(diǎn)P,射線EF與線段AB相交于點(diǎn)G,與射線CA相交于點(diǎn)Q.

(1)求證:△BPE∽△CEQ;
(2)求證:DP平分∠BPQ;
(3)當(dāng)BP=a,CQ= a,求PQ長(用含a的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,把一張兩邊分別平行的紙條折成如圖所示,EF為折痕,EDBF于點(diǎn)G,且∠EFB=48°,則下列結(jié)論: ①∠DEF=48°;②∠AED=84°;③∠BFC=84°;④∠DGF=96°,其中正確的個數(shù)有( )

A. 4B. 3C. 2D. 1

查看答案和解析>>

同步練習(xí)冊答案