【題目】如圖,矩形ABCD的對角線BD經(jīng)過坐標原點,矩形的邊分別平行于坐標軸,點C在反比例函數(shù)的圖象上,ABx軸交于點E,BE:AE=1:2.若點B的坐標為(-21),則k的值為________

【答案】3

【解析】

根據(jù)矩形的對角線將矩形分成面積相等的兩個直角三角形,找到圖中的所有矩形及相等的三角形,即可推出S四邊形AEOFS四邊形HCGO,根據(jù)反比例函數(shù)比例系數(shù)的幾何意義即可求出k14,再解出k的值即可.

解:如圖:∵BE:AE=1:2.點B的坐標為(-21),

∴點A的坐標為(-2,-2)


∵四邊形ABCD、FAEO、OEBG、GOHC為矩形,
又∵BO為四邊形GBEO的對角線,OD為四邊形OHDF的對角線,
SBEOSBGO,SOFDSOHD,SCBDSADB
SCBDSBEOSOFDSADBSBGOSOHD,
S四邊形HCGOS四邊形AEOF2×24,

∵點C在反比例函數(shù)的圖象上,
xyk1,

k1=4
解得k3

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】對于一個函數(shù),如果它的自變量 x 與函數(shù)值 y 滿足:當1≤x≤1 時,1≤y≤1,則稱這個函數(shù)為“閉 函數(shù)”.例如:y=x,y=x 均是“閉函數(shù)”. 已知 y ax2 bx c(a0) 是“閉函數(shù)”,且拋物線經(jīng)過點 A(1,1)和點 B(1,1),則 a 的取值范圍是______________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,二次函數(shù)的圖象與、軸交于、三點,其中,拋物線的頂點為

1)求的值及頂點的坐標;

2)如圖1,若動點在第一象限內(nèi)的拋物線上,動點在對稱軸上,當,且時,求此時點的坐標;

3)如圖2,若點是二次函數(shù)圖像上對稱軸右側(cè)一點,設(shè)點到直線的距離為,到拋物線的對稱軸的距離為,當時,請求出點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我為武漢加油征文活動中,學校計劃對獲得一、二等獎的學生分別獎勵一臺計算器,一個考試包.已知購買臺計算器和個考試包共元,購買臺計算器和個考試包共元.

1)計算器、考試包的單價分別為多少元?

2)經(jīng)與商家協(xié)商,購買計算器超過臺時,每增加一臺,單價降低元;超過臺,均按購買臺的單價銷售,考試包一律按原價銷售,學校計劃獎勵一、等獎學生共計人,其中一等獎的人數(shù)不少于人,且不超過人,這次獎勵一等獎學生多少人時,購買獎品金額最少,最少為多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,某建筑物BC頂部有一旗桿AB,且點A、B、C在同一條直線上,小紅在D處觀測旗桿頂部A的仰角為47°,觀測旗桿底部B的仰角為42°已知點D到地面的距離DE1.56mEC=21m,求旗桿AB的高度和建筑物BC的高度(結(jié)果精確到0.1m).參考數(shù)據(jù):sin47°≈0.73cos47°≈0.68,tan47°≈1.07sin42°≈0.67,cos42°≈0.74,tan42°≈0.90

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(滿分7分)五月石榴紅,枝頭鳥兒歌.一只小鳥從石榴樹上的A沿直線飛到對面房屋的C.A看房屋頂部C處的仰角為,看房屋底部D處的俯角為,石榴樹與該房屋之間的水平距離為米,求出小鳥飛行的距離AC和房屋的高度CD.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠ABC90°,過點BBDAC于點DBE平分∠ABDAC于點E

1)求證:CBCE;

2)若∠CEB80°,求∠DBC的大小.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)與反比例函數(shù)的圖象交于點,,點在以為圓心,為半徑的⊙上,的中點,若長的最大值為,的值為__________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,為⊙的內(nèi)接三角形,為⊙的直徑,在線段上取點(不與端點重合),作,分別交、圓周于、,連接,已知

1)求證:為⊙的切線;

2)已知,填空:

①當__________時,四邊形是菱形;

②若,當__________時,為等腰直角三角形.

查看答案和解析>>

同步練習冊答案