【題目】如圖,在平面直角坐標系中,點C(﹣3,0),點A,B分別在x軸,y軸的正半軸上,且滿足 +|OA﹣1|=0
(1)求點A,點B的坐標.
(2)若點P從C點出發(fā),以每秒1個單位的速度沿射線CB運動,連結AP.設△ABP的面積為S,點P的運動時間為t秒,求S與t的函數(shù)關系式,并寫出自變量的取值范圍.
(3)在(2)的條件下,是否存在點P,使以點A,B,P為頂點的三角形與△AOB相似?若存在,請直接寫出點P的坐標;若不存在,請說明理由.
【答案】
(1)解:∵ +|OA﹣1|=0
∴OA﹣1=0、OB2﹣3=0,
∴OA=1、OB= ,
∴點A的坐標為(1,0)、B的坐標(0, )
(2)解:∵C(﹣3,0),B(0, );
∴OC=3,OB=
在RT△BOC中,BC= =2 ,
設點A到直線CB的距離為y,則
×2 y= ×(3+1)× ,
解得y=2.
則S= ×|2 ﹣t|×2=|2 ﹣t|.
故S與t的函數(shù)關系式為:S=﹣t+2 (0≤t≤2 )或S=t﹣2 (t>2 )
(3)解:存在,
理由:∵tan∠OBC= = = ,
∴∠OBC=60°,
∴∠BCO=30°,
∴BC=2OB=2 ,
∵tan∠OBA= = = ,
∴∠OBA=30°,
∴∠ABC=90°,AB=2OA=2,
①當0≤t≤2 時,若△PBA∽△AOB時,則 = ,
即 = ,
∴PB= ,
∴PBsin60°= × =1,PBcos60°= × = ,
∴P(﹣1, );
若△ABP∽△AOB時,則 = ,
即 = ,
∴PB=2 ,
∴PBsin60°=2 × =3,PBcos60°=2 × = ,
∴P(﹣3,0),
②當t>2 時,若△PBA∽△AOB時,則 = ,
即 = ,
∴PB= ,
∴PBsin60°= × =1,PBcos60°= × = ,
∴P(1, );
若△ABP∽△AOB時,則 = ,
即 = ,
∴PB=2 ,
∴PBsin60°=2 × =3,PBcos60°=2 × = ,
∴P(3,2 ),
所以,存在點P,使以點A,B,P為頂點的三角形與△AOB相似,P點的坐標為(﹣1, )或(﹣3,0)或(1, )或(3,2 ).
【解析】(1)根據(jù)非負數(shù)的性質得到OA、OB的長,即可得到點A、B的坐標;
(2)根據(jù)勾股定理得到CB的長度,再根據(jù)三角形面積公式即可得到點A到直線CB的距離;再根據(jù)的面積公式,即可求出S與t的函數(shù)關系式.
(3)先求得∠ABC=90°,然后分兩種情況討論即可求得點P的坐標.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知點 A(-1,0)和點B(1,2) ,在 y 軸正半軸上確定點 P ,使得△ABP 為直角三角形,則滿足條件的點 P 的坐標為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(8分)某調查小組采用簡單隨機抽樣方法,對某市部分中小學生一天中陽光體育運動時間進行了抽樣調查,并把所得數(shù)據(jù)整理后繪制成如下的統(tǒng)計圖:
(1)該調查小組抽取的樣本容量是多少?
(2)求樣本學生中陽光體育運動時間為1.5小時的人數(shù),并補全占頻數(shù)分布直方圖;
(3)請估計該市中小學生一天中陽光體育運動的平均時間.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】請認真觀察圖形,解答下列問題:
(1)根據(jù)圖中條件,試用兩種不同方法表示兩個陰影圖形的面積的和.
方法1: ;
方法2: .
(2)從中你能發(fā)現(xiàn)什么結論,請用等式表示出來: ;
(3)利用(2)中結論解決下面的問題:若,,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】A,B,C三名大學生競選系學生會主席,他們的筆試成績和口試成績(單位:分)分別用了兩種方式進行了統(tǒng)計,如表和圖一:
A | B | C | |
筆試 | 85 | 95 | 90 |
口試 | 80 | 85 |
(1)請將表一和圖一中的空缺部分補充完整.
(2)競選的最后一個程序是由本系的300名學生進行投票,三位候選人的得票情況如圖二(沒有棄權票,每名學生只能推薦一個),請計算每人的得票數(shù).
(3)若每票計1分,系里將筆試、口試、得票三項測試得分按4:3:3的比例確定個人成績,請計算三位候選人的最后成績,并根據(jù)成績判斷誰能當選.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,平行四邊形ABCD的頂點C在y軸正半軸上,CD平行于x軸,直線AC交x軸于點E,BC⊥AC,連接BE,反比例函數(shù) (x>0)的圖象經(jīng)過點D.已知S△BCE=2,則k的值是( )
A.2
B.﹣2
C.3
D.4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD的頂點B,C在x軸的正半軸上,反比例函數(shù)y= (k≠0)在第一象限的圖象經(jīng)過頂點A(m,2)和CD邊上的點E(n, ),過點E的直線l交x軸于點F,交y軸于點G(0,﹣2),則點F的坐標是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小亮家與姥姥家相距24km,小亮8:00從家出發(fā),騎自行車去姥姥家媽媽8:30從家出發(fā),乘車沿相同路線去姥姥家在同一直角坐標系中,小亮和媽媽的行進路程與北京時間的函數(shù)圖象如圖所示,根據(jù)圖象得到如下結論,其中錯誤的是
A. 9:00媽媽追上小亮B. 媽媽比小亮提前到達姥姥家
C. 小亮騎自行車的平均速度是D. 媽媽在距家13km處追上小亮
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】[數(shù)學實驗探索活動]
實驗材料現(xiàn)有若干塊如圖①所示的正方形和長方形硬紙片.
實驗目的:
用若干塊這樣的正方形和長方形硬紙片拼成一個新的長方形,通過不同的方法計算面積,得到相應的等式,從而探求出多項式乘法或分解因式的新途徑.
例如,選取正方形、長方形硬紙片共 6 塊,拼出一個如圖②的長方形,計算它的面積, 寫出相應的等式有 a2+3ab+2b2=(a+2b)(a+b)或 (a+2b)(a+b) =a2+3ab+2b2.
問題探索:
(1) 小明想用拼圖的方法解釋多項式乘法(2a+b)(a+b) =2a2+3ab+b2 ,那么需要兩種正方形紙片 張,長方形紙片 張;
(2)選取正方形、長方形硬紙片共 8 塊,可以拼出一個如圖③的長方形,計算圖③的面積,并寫出相應的等式;
(3)試借助拼圖的方法,把二次三項式 2a2+5ab+2b2 分解因式,并把所拼的圖形畫在虛線方框內.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com