如圖,以矩形OABC的頂點O為原點,OA所在的直線為x軸,OC所在的直線為y軸,建立平面直角坐標系.已知OA=3,OC=2,點E是AB的中點,在OA上取一點D,將△BDA沿BD翻折,使點A落在BC邊上的點F處.
(1)直接寫出點E、F的坐標;
(2)設頂點為F的拋物線交y軸正半軸于點P,且以點E、F、P為頂點的三角形是等腰三角形,求該拋物線的解析式;
(3)在x軸、y軸上是否分別存在點M、N,使得四邊形MNFE的周長最小?如果存在,求出周長的最小值;如果不存在,請說明理由.

解:(1)E(3,1);F(1,2).

(2)在Rt△EBF中,∠B=90°,
∴EF=
設點P的坐標為(0,n),其中n>0,
∵頂點F(1,2),
∴設拋物線解析式為y=a(x-1)2+2(a≠0).
①如圖1,
當EF=PF時,EF2=PF2,
∴12+(n-2)2=5.
解得n1=0(舍去);n2=4.
∴P(0,4).
∴4=a(0-1)2+2.
解得a=2.
∴拋物線的解析式為y=2(x-1)2+2
②如圖2,
當EP=FP時,EP2=FP2,
∴(2-n)2+1=(1-n)2+9.
解得(舍去)
③當EF=EP時,EP=,這種情況不存在.
綜上所述,符合條件的拋物線解析式是y=2(x-1)2+2.

(3)存在點M,N,使得四邊形MNFE的周長最。
如圖3,作點E關(guān)于x軸的對稱點E′,作點F關(guān)于y軸的對稱點F′,
連接E′F′,分別與x軸、y軸交于點M,N,則點M,N就是所求點.
∴E′(3,-1),F(xiàn)′(-1,2),NF=NF′,ME=ME′.
∴BF′=4,BE′=3.
∴FN+NM+ME=F′N+NM+ME′=E′F′=
又∵,
∴FN+MN+ME+EF=5+,此時四邊形MNFE的周長最小值是
分析:(1)△BDA沿BD翻折,使點A落在BC邊上的點F處,可以知道四邊形ADFB是正方形,因而BF=AB=OC=2,則CF=3-2=1,因而E、F的坐標就可以求出.
(2)頂點為F的坐標根據(jù)第一問可以求得是(1,2),因而拋物線的解析式可以設為y=a(x-1)2+2,以點E、F、P為頂點的三角形是等腰三角形,應分EF是腰和底邊兩種情況進行討論.
當EF是腰,EF=PF時,已知E、F點的坐標可以求出EF的長,設P點的坐標是(0,n),根據(jù)勾股定理就可以求出n的值.得到P的坐標.
當EF是腰,EF=EP時,可以判斷E到y(tǒng)軸的最短距離與EF的大小關(guān)系,只有當EF大于E到y(tǒng)軸的距離,P才存在.
當EF是底邊時,EP=FP,根據(jù)勾股定理就可以得到關(guān)于n的方程,就可以解得n的值.
(3)作點E關(guān)于x軸的對稱點E′,作點F關(guān)于y軸的對稱點F′,連接E′F′,分別與x軸、y軸交于點M,N,則點M,N就是所求點.求出線段E′F′的長度,就是四邊形MNFE的周長的最小值.
點評:本題主要考查了待定系數(shù)法求函數(shù)解析式,求線段的和最小的問題基本的解決思路是根據(jù)對稱轉(zhuǎn)化為兩點之間的距離的問題.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

如圖,以矩形OABC的頂點O為原點,OA所在的直線為x軸,OC所在的直線為y軸,建立平面直角坐標系.已知OA=4cm,OC=3cm,D為OA上一動點,點D以1cm/s的速度從O點出發(fā)向精英家教網(wǎng)A點運動,E為AB上一動點,點E以1cm/s的速度從A點出發(fā)向點B運動.
(1)試寫出多邊形ODEBC的面積S(cm2)與運動時間t(s)之間的函數(shù)關(guān)系式;
(2)在(1)的條件下,當多邊形ODEBC的面積最小時,在坐標軸上是否存在點P,使得△PDE為等腰三角形?若存在,求出點P的坐標;若不存在,請說明理由;
(3)在某一時刻將△BED沿著BD翻折,使得點E恰好落在BC邊的點F處.求出此時時間t的值.若此時在x軸上存在一點M,在y軸上存在一點N,使得四邊形MNFE的周長最小,試求出此時點M,點N的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

10、如圖,以矩形OABC的頂點O為原點,OA所在的直線為x軸,OC所在的直線為y軸,建立平面直角坐標系、已知OA=3,OC=2,點E是AB的中點,在OA上取一點D,將△BDA沿BD翻折,使點A落在BC邊上的點F處,若在y軸上存在點P,且滿足FE=FP,則P點坐標為
(0,4),(0,0)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,以矩形OABC的頂點O為原點,OC所在的直線為x軸,OA所在的直線為y軸,建立平面精英家教網(wǎng)直角坐標系.已知OA=6,OC=4,在OA上取一點D,將△BDA沿BD翻折,點A恰好落在BC邊上的點E處.
(1)試判斷四邊形ABED的形狀,并說明理由;
(2)若點F是AB的中點,設頂點為E的拋物線的右側(cè)部分交x軸于點P,且以點E、F、P為頂點的三角形是等腰三角形,求該拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,以矩形OABC的頂點O為原點,OA所在的直線為x軸,OC所在的直線為y軸,建立平面直角坐標精英家教網(wǎng)系.已知OA=3,OC=2,點E是AB的中點,在OA上取一點D,將△BDA沿BD翻折,使點A落在BC邊上的點F處.
(1)直接寫出點E、F的坐標;
(2)設頂點為F的拋物線交y軸正半軸于點P,且以點E、F、P為頂點的三角形是等腰三角形,求該拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,以矩形OABC的頂點O為原點,OA所在的直線為x軸,OC所在的直線為y軸,建立平面直角坐標系.已知OA=3,OC=2,點E是AB的中點,在OA上取一點D,將△BDA沿BD翻折,使點A落在BC邊上的點F處.
(Ⅰ)直接寫出點E、F的坐標;
(Ⅱ)若M為x軸上的動點,N為y軸上的動點,當四邊形MNFE的周長最小時,求出點M、N的坐標,并求出周長的最小值.

查看答案和解析>>

同步練習冊答案