【題目】如圖9,正方形的面積為4,反比例函數(shù)()的圖象經(jīng)過點

(1) 求點B的坐標和的值;

(2) 將正方形分別沿直線、翻折,得到正方形、.設(shè)線段、分別與函數(shù) ()的圖象交于點、,求直線EF的解析式.

【答案】(1)4;(2)

【解析】試題分析:(1)由正方形的面積公式可求出點B的坐標,將點B的坐標代入反比例函數(shù)關(guān)系式中可得出關(guān)于k的一元一次方程,解方程即可得出結(jié)論;

(2)由翻折的性質(zhì)可得出點E的橫坐標、點F的縱坐標,由E、F點在反比例函數(shù)上可得出E、F點的坐標,設(shè)出直線EF解析式為y=mx+n,由待定系數(shù)法即可求出直線EF的解析式.

試題解析:(1)∵正方形OABC的面積為4,

∴OA=OC=2,

∴點B坐標為(2,2).

y的圖象經(jīng)過點B,

∴k=xy=2×2=4.

(2)∵正方形AMC′B、CBA′N由正方形OABC翻折所得,

∴ON=OM=2OA=4,

∴點E橫坐標為4,點F縱坐標為4.

∵點E、F在函數(shù)y=的圖象上,

∴當(dāng)x=4時,y=1,即E(4,1);

當(dāng)y=4時,x=1,即F(1,4).

設(shè)直線EF解析式為y=mx+n,將E、F兩點坐標代入,

∴m=-1,n=5.

∴直線EF解析式為y=-x+5.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】室內(nèi)溫度10℃,室外溫度是-3℃,那么室內(nèi)溫度比室外溫度高( )
A.-13℃
B.-7℃
C.7℃
D.13℃

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某公司需招聘一名員工,對應(yīng)聘者甲、乙、丙從筆試、面試、體能三個方面進行量化考核,三人各項得分如表:

筆試

面試

體能

84

78

90

85

80

75

80

90

73

根據(jù)三項得分的平均分,從高到低確定三名應(yīng)聘者的排名順序.

該公司規(guī)定:筆試,面試、體能得分分別不得低于80分,80分,70分,并按的比例計入總分根據(jù)規(guī)定,請你說明誰將被錄用.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,王剛在研究性學(xué)習(xí)活動中,對自己家所在的小區(qū)進行調(diào)查后發(fā)現(xiàn),小區(qū)汽車入口寬AB為3.2m,在入口的一側(cè)安裝了停止桿CD,其中AE為支架.當(dāng)停止桿仰起并與地面成60°角時,停止桿的端點C恰好與地面接觸,此時CA為0.7m.在此狀態(tài)下,若一輛貨車高3m,寬2.5m,入口兩側(cè)不能通車,那么這輛貨車在不碰桿的情況下,能從入口內(nèi)通過嗎?請你通過計算說明.(參考數(shù)據(jù): ≈1.7)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長為8的正方形ABCD中,點OAD上一動點(4OA8),以O為圓心,OA的長為半徑的圓交邊CD于點E,連接OEAE,過點E作⊙O的切線交邊BCF

1)求證:ODE∽△ECF;

2)在點O的運動過程中,設(shè)DE=

①求的最大值,并求此時⊙O的半徑長;

②判斷CEF的周長是否為定值,若是,求出CEF的周長;否則,請說明理由?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+ca≠0)的圖象如圖所示,有下列5個結(jié)論:①abc0; ba+c9a+3b+c0;c-3a;a+b+cmam+b+c,其中正確的有( 。﹤。

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若點A(x3,2)在第二象限,則x的取值范圍是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】A在點B的北偏東60°方向,則點B在點A_____方向.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】平面直角坐標系xOy中,點P的坐標為(m+1,m-1).

(1)試判斷點P是否在一次函數(shù)y=x-2的圖象上,并說明理由;

(2)如圖,一次函數(shù)y=-x+3的圖象與x軸、y軸分別相交于A,B,若點P在△AOB的內(nèi)部,求m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案