二次函數(shù)y=x2-4x的頂點(diǎn)坐標(biāo)是
 
考點(diǎn):二次函數(shù)的性質(zhì)
專題:
分析:用配方法將拋物線的一般式轉(zhuǎn)化為頂點(diǎn)式,確定頂點(diǎn)坐標(biāo)即可.
解答:解:∵y=x2-4x=(x-2)2-4,
∴拋物線頂點(diǎn)坐標(biāo)為(2,-4).
故本題答案為:(2,-4).
點(diǎn)評(píng):本題考查了拋物線解析式與頂點(diǎn)坐標(biāo)的關(guān)系,求頂點(diǎn)坐標(biāo)可用配方法,也可以用頂點(diǎn)坐標(biāo)公式.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如果一條拋物線y=ax2+bx+c(a≠0)與x軸有兩個(gè)交點(diǎn),那么以該拋物線的頂點(diǎn)和這兩個(gè)交點(diǎn)為頂點(diǎn)的三角形稱為這條拋物線的“拋物線三角形”.
(1)“拋物線三角形”一定是
 
三角形;
(2)如圖,△OAB是拋物線y=-x2+bx(b>0)的“拋物線三角形”,是否存在以原點(diǎn)O為對(duì)稱中心的矩形ABCD?若存在,求出過O、C、D三點(diǎn)的拋物線的表達(dá)式;若不存在,說明理由;
(3)在(2)的條件下,若以點(diǎn)E為圓心,r為半徑的圓與線段AD只有一個(gè)公共點(diǎn),求出r的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在△ABC中,點(diǎn)O在AB邊上,過點(diǎn)O作BC的平行線交∠ABC的平分線于點(diǎn)D,過點(diǎn)B作BE⊥BD交直線OD于點(diǎn)E.
(1)求證:OE=OD;
(2)當(dāng)點(diǎn)O在AB的什么位置時(shí),四邊形BDAE是矩形?說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,邊長(zhǎng)為n的正方形OABC的邊OA,OC在坐標(biāo)軸上,點(diǎn)A1,A2,…,An-1為OA的n等分點(diǎn),點(diǎn)B1,B2,…,Bn-1為CB的n等分點(diǎn),連結(jié)A1B1,A2B2,…,An-1Bn-1,分別交曲線y=
n-2
x
(x>0)于點(diǎn)C1,C2,…,Cn-1.若C15B15=16C15A15,則n的值為
 
.(n為正整數(shù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知四邊形ABCD四個(gè)頂點(diǎn)的坐標(biāo)為A(1,3),B(m,0),C(m+2,0),D(5,1),當(dāng)四邊形ABCD的周長(zhǎng)最小時(shí),m的值為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

若x為整數(shù),則使分式
6x-9
2x-1
的值為整數(shù)的x的值的個(gè)數(shù)是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知點(diǎn)P(4-2a,3a-1)在第二象限,則點(diǎn)a的取值范圍為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

計(jì)算:(3+a)(3-a)+a2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,AB是⊙O的直徑,OD垂直于弦AC于點(diǎn)E,且交⊙O于點(diǎn)D,F(xiàn)是BA延長(zhǎng)線上一點(diǎn),若∠CDB=∠BFD.
(1)求證:FD是⊙O的一條切線;
(2)若AB=10,AC=8,求DF的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案